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Diverse Application Areas
with ML/DL Since 2008
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Diverse Application Areas are
Converging on one/few DNN Models
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Our Research Group’s Focus
Efficient Deep Learning/Efficient DNNs

Efficient/Scalable Training 
and Inference in the Cloud

Efficient Training
• FireCaffe, LARS, LAMB
• Staged-Training

Efficient Inference at the Edge

• Computer Vision 
– SqueezeNet, SqueezeNext
– Shift
– SqueezeDet
– SqueezeSeg

• ASR and NLU
– SqueezeWave, SqueezeBERT
– SqueezeFormer
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Invited/Keynote Speaker at EMDNN (NeurIPS 2016), ESWEEK 2017, EDLCV (CVPR 2017), CVPRAD (CVPR 2018) 
MLPCD NeurIPS (2018) LPIRC (2019), EMC^2 (NeurIPS 2019), HENP (ESWEEK 2020), EVW (ICLR 2021), ENLP (2021), 
Design Automation Conference 2021, VLSI SOC 2022, MLSYSArc (ISCA 2022), SustaiNLP (EMNLP 2022) 

Squeeze Family 
of DNNs

Efficient Inference
• Learned Token Pruning
• TASC
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Outline
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Model Size and Computation are Increasing

[1] Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest and Most Powerful Generative Language Model.
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How to prune without retraining?

3-stage Pruning Pipeline to retain high accuracy without retraining
1. Fisher-based Mask Search

– Finds which heads/filters to prune based on diagonal approximation of the Fisher information matrix
2. Fisher-based Mask Rearrangement

– Rearranges the pruned heads/filters by capturing intra-layer interactions
3. Mask Tuning

– Adjusts the non-zero mask variables to ensure that the output signal is recovered for each layer
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LTP Results
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• Surprisingly, even without retraining, our pruning strategy 
achieves comparable accuracy-FLOPs tradeoff compared to 
other state-of-the-art Transformer pruning methods

• End-to-end pruning time is 2~3 orders of magnitude less 
than other methods (a few seconds vs. a few hours)

Kwon, Woosuk, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami. "A Fast Post-Training Pruning Framework 
for Transformers." KDD 2022.
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Staged Training for Transformer-LM
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- Grow GPT-small to GPT-large while being

- loss-preserving

- training-dynamics-preserving

- Saved up to 20% compute in total for 

GPT2-large (774M) training

jump

Shen, Sheng, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. "Staged Training for 
Transformer Language Models." ICML 2022.
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Problem I: Scalability v.s. Sparsity

• Need very high sparsity to alleviate overhead
• However, Number of Machines ↑↑ Sparsity ↓↓

-0.30.15 0.3 -0.1 0.04

00 0.3 0 0
Top-1

-0.240.3 0.23 -0.2 0.09

00.3 0 0 0
Top-1

-0.280.16 0.26 -0.19 0.1

-0.280 0 0 0
Top-1

-0.280.3 0.3 0 0

-0.090.1 0.1 0 0
Average



14

-0.30.15 0.3 -0.1 0.04

-0.30 0.3 0 0

Top-2 X

Problem II: Is current Top K selection based on correct metric?
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Landscape Topology Analysis

Ø Importance of a gradient value is relative to the topology of the loss landscape.

• A small value in a sharp loss landscape is important
• A large value in a flat loss landscape is not important
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Solution: Topology-Aware Structured Communications 
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TASC: VGG-19 on ImageNet

TASC versus DistributedDataParallel: (Single Node)

Method Batch Size Machine Time (ms) Comm. Time 
(ms) Comm. SpeedUp

No Sync 128 8 K80 438 0 NA

TASC 128 8 K80 660 222 2.63

RingAllReduce + Hide 128 8 K80 915 477 1.22

RingAllReduce 128 8 K80 1021 583 1
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TASC: VGG-19 on ImageNet

TASC versus DistributedDataParallel: (Multi Nodes)

Method Batch Size Machine Time (ms) Comm. Time 
(ms) Comm. SpeedUp

No Sync 128 2* 8 K80 372 0 NA

TASC 128 2* 8 K80 515 143 11.80

RingAllReduce + Hide 128 2* 8 K80 1859 1487 1.13

RingAllReduce 128 2* 8 K80 2059 1687 1
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Training DLRM model leads to fast overfitting 
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We found that 4-bit quantization of embedding tables can alleviate the overfitting.



Technique No. 1
A better QAT pipeline with no copy of embedding table 
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Many Embedding Tables  

Scale 
Whole table Min, Max

Index into the 
table and find 
the rows needed 

Quantize

Copy of 
quantized rows 
needed 

+
Output of the 
embedding 
table 



Technique No. 2 
Periodic Update of Scale

• The right figure shows the bar graph of 
inference latency of the entire DLRM.

• Ablation studies – comparison with 
– No scaling 
– No quantization of activations
– No quantization of activations, 

dequantization and round 
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Periodically update min and max to compute 
quantization scale
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- We found that 
calculating min and max 
once every 200 
iterations doesn’t hurt 
accuracy. 

- Periodical update of 
quantization scales 
makes the convergence 
under less fluctuance.



Gradient Sparsification and Quantization
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Sparsification: only communicate gradient values that are 
used and nonzero. 

Quantization: Use uniform quantization on gradients 

GPUs – nccl doesn’t support sparsification, only gloo
backend is available, but it has many restrictions.

CPUs – gloo, mpi, and oneAPI oneCCL, we use oneCCL for 
the best support and optimization.

Gloo mpi ncclBackend:
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Summary
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Open-sourced Repos:
https://github.com/allenai/staged-training
https://github.com/WoosukKwon/retraining-free-pruning
https://github.com/kssteven418/LTP

We systematically studied efficient inference and training of large neural network models. 
• In LTP we accelerate the inference of Transformers. 
• In Staged Training and TASC we accelerate the training of CNNs and Transformers. 
• For even larger models, such as DLRM, we propose DQRM to alleviate the cost of communications during 

training on distributed systems.
• CPUs and oneAPI oneCCL are suitable for running the training and inference of large models like DLRM.

https://github.com/allenai/staged-training
https://github.com/WoosukKwon/retraining-free-pruning
https://github.com/kssteven418/LTP
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Thank you for listening!


