
Challenges Faced When Porting
Ginkgo to the SYCL Ecosystem

Yu-Hsiang Tsai1, Terry Cojean1, Tobias Ribizel1, Hartwig Anzt1,2

1Karlsruhe Institute of Technology, 2University of Tennessee

Overview

- Ginkgo
- Challenges and Workarounds

- kernel attributes propagation rules changes
- device_code_split - per_kernel and per_source
- devices with varying parameters

- Ginkgo Performance on Intel GPUs

Cross-Platform Sparse Linear Algebra Library

Ginkgo for cross-platform

Ginkgo is an open source C++
math library with focus on
sparse linear algebra
functionality on GPUs. It
provides the same interface
across different devices to
users.

Ginkgo provides the same interface but with native device language

Ginkgo provides the same interface but with native device language

Ginkgo provides the same interface but with native device language

Ginkgo provides the same interface but with native device language

Ginkgo supports oneAPI

oneMKL has comprehensive support for dense linear algebra but features few basic
routines for sparse linear algebra.

Ginkgo provides sparse linear algebra functionality and numerical algorithms
beyond basic building blocks like SpMV.
With Ginkgo, complete numerical simulation workflows can be realized: iterative
solvers, preconditioners, algebraic multigrid, etc.

oneAPI allows to execute on GPUs and CPUs from Intel and oneDPL gives similar
functions like Thrust.

Ginkgo brings more functionality to oneAPI

Matrix: Dense, Csr, Coo, Ell, Sellp, Hybrid, fixed-blockCsr, SparseCsr

Solver: CG, BiCG, BiCGStab, CGS, FCG, (CB-)GMRES, IDR, Multigrid

Preconditioner: Jacobi, ISAI, (Par)ILU, (Par)IC

Mixed Precision support:

Mixed precision preconditioners
Mixed precision GMRES (CB-GMERS)
Mixed precision Multigrid

Challenges and Workarounds

Kernel attributes propagation rule changes

When SYCL 1.2.1 with Intel extension (before DPC++ 2022), the kernel
attributes from inner components can be propagated to the top level.

Rely on it, Ginkgo introduces the cooperative group for DPC++.
It allows that we set the subgroup_size inside the kernel, and we can use it like
CUDA cooperative group.

However, SYCL 2020 and DPC++ 2022 disabled this rule.
It can only set the kernel attributes from the top call.

We also show our high interest about the sub-subgroup size

SYCL 1.2.1: use subgroup like cooperative groups

create the subgroup with template
the kernel attributes are propagated to outside

SYCL 1.2.1: use subgroup like cooperative groups

create the subgroup with template
the kernel attributes are propagated to outside

SYCL 2020: decide the subgroup size before using it

The kernel attributes can not be propagated.
Need to put it in the top call.

Why we need to adjust the subgroup size

The performance of subset reduction on 10,000,000 elements on Gen12 GPU
(Intel(R) Iris(R) Xe MAX Graphics - Gen12LP)
“float per 32 elements” means using float as the elements type and
performing reduction 32 by 32 elements

Auto generate selection

We need to generate the kernels for different situation in compile time and
then use the desired one to fit the current situation in runtime.

possible configs list = <A, B, C, …>

Auto generate selection

We need to generate the kernels for different situation in compile time and
then use the desired one to fit the current situation in runtime.

possible configs list = <A, B, C, …>

func<A, RestA…>
if (input == A) -> kernel<A>
else -> func<RestA…>

func<B, RestB…>
if (input == B) -> kernel
else -> fun <RestB…>

No match

Compile time:
template expanding is
in compile time, so the
kernel<A>, kernel
are already compiled

Auto generate selection

We need to generate the kernels for different situation in compile time and
then use the desired one to fit the current situation in runtime.

possible configs list = <A, B, C, …>

func<A, RestA…>
if (input == A) -> kernel<A>
else -> func<RestA…>

func<B, RestB…>
if (input == B) -> kernel
else -> fun <RestB…>

No match

Compile time:
template expanding is
in compile time, so the
kernel<A>, kernel
are already compiled

Run time:
we generate the nested
if-else function. We pass
the desired config into
the function in runtine,
and the nested
conditions run the
matched kernel.

Selection example - usage

Choose the valid configiration and pass it to function.

device_code_split

DPC++ provides different way to split the device code: per_kernel or
per_source

template <typename VT>
void kernel_1(){}

template <typename VT>
void kernel_2(){}

device_code

: dependency or kernel
essential components

device_code_split

DPC++ provides different way to split the device code: per_kernel or
per_source

template <typename VT>
void kernel_1(){}

template <typename VT>
void kernel_2(){}

kernel_1<double>(){}

kernel_1<float>(){}

kernel_2<int>(){}

kernel_2<int64>(){}

per_kernel

device_code

: dependency or kernel
essential components

per_kernel

Using per_kernel will make each kernel instantiation in different units.

Pro:
- Putting invalid kernel is okay.
- JIT compilation time comes with its own kernel only, so its JIT relatively faster than
per_source
Con:
- Give more complexity to the compiler because each instantiation needs to be complete
- Compilation time is long
- Dependency duplication
- It will make the library big especially for debug build.
The corresponding error is

It will throw relocation truncated to fit: R_X86_64_GOTPCREL.... and PC-relative offset overflows in PLT entry …

The error makes sense because each instantiation is isolated and complete.

device_code_split

DPC++ provides different way to split the device code: per_kernel or
per_source

template <typename VT>
void kernel_1(){}

template <typename VT>
void kernel_2(){}

kernel_1<double>(){}

kernel_1<float>(){}

kernel_2<int>(){}

kernel_2<int64>(){}

kernel_1<double>(){}

kernel_1<float>(){}

kernel_2<int>(){}

kernel_2<int64>{}

per_kernel per_source

device_code

: dependency or kernel
essential components

per_source

Pro:
- Reduce the size of debug library.
- Compile faster than per_kernel.
- Reuse the kernel essential part or dependency

Con:
- All kernel instantiations need to be valid on the device.
- Takes more time on the first kernel of each device source file.

Issue: Too many kernels lead OOM issue on CPU. GPU does not face this issue.
With the Intel team, we already submitted this issue and they are working on it

For example, we have a function which needs to select valuetype, workgroup size,
subgroup size, (virtual) sub-subgroup size. It gives ~360 kernels in one function and
leads this issue.

Devices with varying parameters

CPU can support 4, 8, 16, 32, 64 subgroup size and larger max workgroup size
than 1024.
(32, 64 can be used after one of DPC++ 2021 release.)

GPU can support 8, 16, 32 subgroup size. However, different GPUs support
different max workgroup size like 256, 512.

Gen9 Integrated GPU uses 256 as max workgroup size.
Gen12 Integrated GPU/Gen12LP Discrete GPU use 512 as max workgroup size.

Changes from per_kernel to per_source

Originally, we went for the per_kernel way which instantiated all possible
kernels into Ginkgo library.

However, we faced the too large debug library issue and we need to support
the AOT compilation in the future.

Thus, we need to make subgroup size and workgroup size adjustable such
that we can use the valid configuration for using Ahead of Time(AOT)
compilation or per_source.

CMake adjusts the subgroup/workgroup size list

Ginkgo introduces the cmake options for subgroup/workgroup size.

-DGINKGO_DPCPP_WORKGROUPS=256,512

-DGINKGO_DPCPP_SUBGROUPS=8,16,32

Ginkgo will produce the pair from these two lists.

<8, 256>, <16, 256>, <32, 256>, <8, 512>, <16, 512>, <32, 512>

Two level selection - split device and kernel selection

We use two levels selection to generate the corresponding kernels.

The first level only chooses which device attributes to use.

Then, the second level chooses which kernel arguments to run.

Note. The kernel is invalid only when the kernel is compiled with invalid
subgroup or workgroup size. The local memory larger than the allowed size of
device is not considered invalid in JIT.

Readability - type for device attributes

Originally, we use ConfigSet to embed the device attributes and the kernel
arguments together. However, it leads some challenges when reading the codes.

wg_size = Config::decode<0>(cfg);
sg_size = Config::decode<1>(cfg);

Because we use two level selection, those attributes are splitted now.
We can also transfer the device attributes to type information.

Cfg::workgroup_size;
Cfg::subgroup_size;

We support both in the selection phase, but we will transfer it to the corresponding
type in the device kernels.

Ginkgo Performance on Intel GPUs

Benchmark detail

We use two Intel GPUs from devcloud in the following benchmark.

- Intel Integrated GPU: Intel(R) UHD Graphics P630, which is a integrated
gpu with Intel(R) Xeon(R) E-2146G CPU (Gen9)
It supports float and double precision.

- Intel Discrete GPU: Intel(R) Iris(R) Xe MAX Graphics, which is a Gen12
discrete GPU.
It only supports float precision. (Gen12LP)

We write the GPU kernels. We do not use OpenMP offloading for GPU.

Ginkgo SpMV performance on Intel Gen9/Gen12 GPU

Intel Gen9 GPU
[double precision results]

Intel Gen12LP GPU
[single precision results]

Sparse Matrix vector Multiplication (SpMV) kernel, performance
comparison of Ginkgo functionality and oneMKL kernels.

Ginkgo solvers performance on Intel Gen9/Gen12 GPU

Intel Gen9 GPU
[double precision results]

Intel Gen12LP GPU
[single precision results]

Ginkgo preconditioner effectiveness on Gen12LP GPU

Effectiveness of Ginkgo’s preconditioners on Intel GPUs in terms of convergence
improvement [iteration count] and time-to-solution acceleration. [solver runtime]

Ginkgo Algebraic Multigrid (AMG)
double precision mixed precision

Ginkgo’s Algebraic Multigrid (AMG) method in double precision and
mixed precision mode running on Intel GPUs.

Conclusion

We use the oneAPI ecosystem to prepare Ginkgo for Intel GPUs

Ginkgo provides comprehensive sparse linear algebra support for devices
supporting DPC++/SYCL including intel GPUs.

We use oneAPI to make Ginkgo be a SYCL-available library. We demonstrate
our workaround for some issues on SYCL.

We are looking forward to the addition of the sub-subgroup feature, more
oneDPL funtionality, and adoption of oneDPL by other architectures.

Thanks!

