
Development and optimization of a
SYCL backend for libCEED
Umesh Unnikrishnan1, Kris Rowe1, and Varsha Madananth2

1 Argonne Leadership Computing Facility
2 Intel Corporation

oneAPI DevSummit for AI and HPC 2023
December 6, 2023

Argonne Leadership Computing Facility2

Outline
Ø Software design of libCEED

Ø SYCL online compiler

Ø Optimization of hotspot kernels
q Specialization constant

q Tuning workgroup sizes/barriers

q SIMD size/register width

Ø Summary and Future work

Disclaimer: This work was done on a pre-production supercomputer with early versions of the Aurora
software development kit.

3 Argonne Leadership Computing Facility

libCEED

• C language
• Element-based discretizations
• low & high-order

Library

• Fortran
• Python
• Julia
• Rust

Interfaces

• Runtime selection
• CPU—serial, AVX, LIBXSMM
• GPU (Native)—CUDA, HIP
• MAGMA, OCCA**

Backends

• PIMPL Idiom
• Host code is serial
• User handles MPI

Implementation

https://github.com/CEED/libCEEDDeveloped through CEED co-design center as part of the ECP
courtesy: Jed Brown, Natalie Beams and others.

Argonne Leadership Computing Facility4

Overview of libCEED operations
• Portable library that provides an API for applications to share efficient kernels for element-based discretizations.

https://github.com/CEED/libCEED

Applications
- MFEM
- nek5000
- PETSc
- PHASTA

libCEED

Pure C

AVX

CUDA

HIP

SYCL

𝐴 = 𝐸!𝐵!𝑄𝐵𝐸

Q

Argonne Leadership Computing Facility5

libCEED Runtime Compilation Usage

Problem
Parameters

Constants polynomial order

spatial dimension

Determine loop-bounds element count

node count

User
Functions

Operate pointwise at mesh nodes Boundary conditions

Forces

Injected into kernels Problem-dependent

Avoids memory traffic

Argonne Leadership Computing Facility6

Runtime code compilation in libCEED
• libCEED host application generates device code at runtime based on user input (the code is in

stringstream) – compiles and runs on GPU devices.

• CUDA backend uses nvrtc for runtime compilation of generated kernels.

• Two possible solutions for SYCL –

ØUsing specialization constant (a partial alternative)

ØUsing Intel’s oneAPI online compilation extension (experimental early access) –

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_intel_online_compiler.asciidoc

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_intel_online_compiler.asciidoc

Argonne Leadership Computing Facility7

Existing CUDA Backend

AOT Compilation • Uses nvcc
• Some (few) kernels

Online
Compilation

• Uses NVRTC

• Kernel source string is generated

• Boilerplate code is provided (e.g., read/writes with global mem)

• User source code is loaded from file

• Create BPàUserDefinedFuncàBP “sandwich”

• Load Cumodule, use CUfunction

Argonne Leadership Computing Facility8

Designing the SYCL Backend

Problem
Parameters

Specialization constants

Define kernels using lambdas or functors

CUDA module can be replaced by SYCL kernel bundle

User
Functions

How to compile source code string? (Ideal)

How to link compiled user functions? (Fallback)

Argonne Leadership Computing Facility9

libCEED SYCL Online Compilation
• The libCEED CUDA and HIP backends use their respective vendor runtime compilation

libraries (e.g., nvrtc, hiprtc).

• The current SYCL spec doesn’t prescribe similar functionality.

• An Intel extension for SYCL allows for the runtime compilation of OpenCL C source.

§ Provided to SYCL API as a std::string

• Restriction to OpenCL C required some workarounds when porting libCEED jit source.
§ E.g., No templates, no function pointers

§ Also required some workarounds in QFunction implementation.

• We are working with Intel compiler team to help drive the online compiler extension forward.

• Future versions may support runtime compilation of SYCL source
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc

Argonne Leadership Computing Facility10

Intel Online Compiler
SYCL Extension
• Experimental extension

• Calls ocloc library API (libigc)

• Compile OpenCL string to “binary
blob”

• How to use “binary blob”?

Alternatives are not ideal

• OpenCL plugin only + interop
• Use Level Zero + libigc directly

Example from
Intel LLVM docs

Argonne Leadership Computing Facility11

Example
Online Compiler + Level Zero

binary blob

LZ module descriptor

SYCL kernel bundle

LZ kernel

LZ module

SYCL kernel

Argonne Leadership Computing Facility12

libCEED Implementation

Argonne Leadership Computing Facility13

SYCL queue synchronization for external libraries
• Streams in CUDA and HIP are in-order.

• A global default stream is available - simplifying the coordination with external libraries.

• Initial implementation of SYCL backends used in-order queues.

• CEED-PHASTA uses PETSc

§ For Intel GPUs, PETSc uses Kokkos-SYCL backend

§ Kokkos-SYCL uses out-of-order SYCL queues

• For synchronization with PETSc, libCEED SYCL inputs SYCL queue from PETSc.

• To use out-of-order queues with the libCEED SYCL implementation, the Intel SYCL extension for
enqueueing (asynchronous, device-side) enqueue barriers were used.

• Future development will look to use SYCL events to explicitly express data dependencies within
libCEED.

Argonne Leadership Computing Facility14

Performance Baseline
• sycl-fluids examples using Blasius test case.

• Overall time per iteration on A100 was 3.7 sec

• Overall time per iteration on PVC was 70 seconds

• 3 hotspots identified for both A100 and PVC.
§ CeedBasisSyclGrad – SYCL kernel

§ CeedBasisSyclInterp – SYCL kernel

§ IJacobian (OpenCL kernel which is online compiled)

Kernel PVC (1 Tile) A100 (CUDA)

IJacobian 29 ms 0.92 ms

Interp 10.7 ms 0.11 ms

Grad 197 ms 1.3 ms

Argonne Leadership Computing Facility15

BASIS GRAD KERNEL
Using microbenchmarks of the kernel

Kernel execution time = 1.33 ms

Inline kernel Kernel in function

Kernel execution time = 5.8 ms

Argonne Leadership Computing Facility16

Use of SYCL specialization constants

Kernel execution time = 1.38 ms

Argonne Leadership Computing Facility17

Further optimizations on CeedBasisGrad
• Adjust WG size from 1024 to 32.

• Replace workgroup barrier with nd_item barrier
sycl::group_barrier(work_group) à work_item.barrier(sycl::access::fence_space::local_space)

• Remove IGC runtime memory checks by using specialization constant.
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:100 :Adding additional control
flow due to presence of generic address space operations
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:185 :Adding additional control
flow due to presence of generic address space operations
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:187 :Adding additional control
flow due to presence of generic address space operations
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:0 :Adding additional control flow
due to presence of generic address space operations

Kernel PVC (1 Tile) A100
IJacobian 29ms 0.9ms
Interp 1.75ms 0.11ms
Grad 4.8ms 1.3ms

Argonne Leadership Computing Facility18

Optimizations performed on IJacobian
• IJacobian kernel was using default range. The compiler was setting the workgroup size to 32.

§ Changing to default nd_range and setting WG size to 384 (CUDA) improved performance slightly.

• Reducing register spills
§ Building with AOT did not show any warnings on spills as this was OpenCL kernel.
§ Inspected assembly by setting the following env variables –

§ IGC_DumpToCurrentDir=1, IGC_DumpToCurrentDir=1
§ For more IGC env variables - https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md
§ Generates asm for all kernels. To search for kernel names –

for f in ./*.asm; do echo "------------"; echo $f; cat $f | grep "\/\/.kernel"; done

https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md

Argonne Leadership Computing Facility19

Reducing spills
• By default , PVC has 128 64-byte registers allocated per thread.

• Registers spills can be expensive. Improve register usage per thread by
§ Increasing the registers available per thread to 256

§ Running in lower SIMD width

• Passing large register file with online compilation.
ze_module_desc_t lz_mod_desc = {ZE_STRUCTURE_TYPE_MODULE_DESC,
 nullptr,
 ZE_MODULE_FORMAT_IL_SPIRV,
 il_binary.size(),

 il_binary.data(),
 "-ze-opt-large-register-file", // flags
 nullptr};

• Enforcing SIMD16 with OpenCL kernel
__attribute__(intel_reqd_sub_group_size(16))

https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_required_subgroup_size.html

Argonne Leadership Computing Facility20

Where does performance stand currently

Kernel A100 PVC (before
optimization)

PVC (after
optimizations)

IJacobian 0.9 ms 29 ms 1.1 ms

Grad 1.3 ms 6.4 ms 4.5 ms

Total time per
timestep 3.6 s 70 s 11 s

*This is still a work in progress, and not a representative of performance between two hardware

Argonne Leadership Computing Facility21

Key Takeaways

• Allows for NVRTC-like runtime compilation
• Currently restricted to use of OpenCL C/LevelZero kernels (interop)
• In future, likely to extend support for SYCL kernel code

Intel online compiler
SYCL extension

• Specialization constants - useful for optimizing code with parametric
values. Runtime increases with number of spec. constants

• Use of appropriate workgroup sizes and barriers.
• For register-heavy kernels – large GRF + smaller SIMD width

Optimization
Strategies

• Systematic profiling of online compiled code for further insights on
performance bottlenecks.

• Use of the updated SYCL kernel compiler with SYCL user functions.
Future Work

Argonne Leadership Computing Facility22

Acknowledgements

Team members: Jed Brown (UC Boulder)
 Natalie Beams (UT Knoxville)
 Kenneth Jansen (UC Boulder)

*This research used resources of the Argonne Leadership Computing Facility, a U.S. Department of
Energy (DOE) Office of Science user facility at Argonne National Laboratory and is based on research
supported by the U.S. DOE Office of Science-Advanced Scientific Computing Research Program, under
Contract No. DE-AC02-06CH11357.

*This work was done on a pre-production supercomputer with early versions of the
Aurora software development kit.

