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Outline
Ø Software design of libCEED

Ø SYCL online compiler

Ø Optimization of hotspot kernels
q Specialization constant

q Tuning workgroup sizes/barriers

q SIMD size/register width

Ø Summary and Future work

Disclaimer: This work was done on a pre-production supercomputer with early versions of the Aurora 
software development kit.
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libCEED

• C language
• Element-based discretizations
• low & high-order

Library

• Fortran
• Python
• Julia
• Rust

Interfaces

• Runtime selection
• CPU—serial, AVX, LIBXSMM
• GPU (Native)—CUDA, HIP
• MAGMA, OCCA**

Backends

• PIMPL Idiom
• Host code is serial
• User handles MPI

Implementation

https://github.com/CEED/libCEEDDeveloped through CEED co-design center as part of the ECP
courtesy: Jed Brown, Natalie Beams and others.
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Overview of libCEED operations
• Portable library that provides an API for applications to share efficient kernels for element-based discretizations.

https://github.com/CEED/libCEED

Applications
- MFEM
- nek5000
- PETSc
- PHASTA

libCEED

Pure C

AVX

CUDA

HIP

SYCL

𝐴 = 𝐸!𝐵!𝑄𝐵𝐸
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libCEED Runtime Compilation Usage

Problem 
Parameters

Constants polynomial order

spatial dimension

Determine loop-bounds element count

node count

User 
Functions

Operate pointwise at mesh nodes Boundary conditions

Forces

Injected into kernels Problem-dependent

Avoids memory traffic
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Runtime code compilation in libCEED
• libCEED host application generates device code at runtime based on user input (the code is in 

stringstream) – compiles and runs on GPU devices.

• CUDA backend uses nvrtc for runtime compilation of generated kernels.

• Two possible solutions for SYCL – 

ØUsing specialization constant (a partial alternative)

ØUsing Intel’s oneAPI online compilation extension (experimental early access) – 

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_intel_online_compiler.asciidoc

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_intel_online_compiler.asciidoc


Argonne Leadership Computing Facility7

Existing CUDA Backend

AOT Compilation • Uses nvcc
• Some (few) kernels

Online 
Compilation 

• Uses NVRTC

• Kernel source string is generated

• Boilerplate code is provided (e.g., read/writes with global mem)

• User source code is loaded from file

• Create  BPàUserDefinedFuncàBP “sandwich”

• Load Cumodule, use CUfunction
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Designing the SYCL Backend

Problem 
Parameters

Specialization constants

Define kernels using lambdas or functors

CUDA module can be replaced by SYCL kernel bundle 

User 
Functions

How to compile source code string? (Ideal)

How to link compiled user functions?  (Fallback)
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libCEED SYCL Online Compilation
• The libCEED CUDA and HIP backends use their respective vendor runtime compilation 

libraries (e.g., nvrtc, hiprtc).

• The current SYCL spec doesn’t prescribe similar functionality.

• An Intel extension for SYCL allows for the runtime compilation of OpenCL C source.

§ Provided to SYCL API as a std::string

• Restriction to OpenCL C required some workarounds when porting libCEED jit source.
§ E.g., No templates, no function pointers

§ Also required some workarounds in QFunction implementation.

• We are working with Intel compiler team to help drive the online compiler extension forward.

• Future versions may support runtime compilation of SYCL source
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_kernel_compiler.asciidoc
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Intel Online Compiler 
SYCL Extension
• Experimental extension

• Calls ocloc library API (libigc)

• Compile OpenCL string to “binary 
blob”

• How to use “binary blob”?

Alternatives are not ideal

• OpenCL plugin only + interop
• Use Level Zero + libigc directly

Example from 
Intel LLVM docs
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Example
Online Compiler + Level Zero

binary blob

LZ module descriptor

SYCL kernel bundle

LZ kernel

LZ module

SYCL kernel
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libCEED Implementation
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SYCL queue synchronization for external libraries
• Streams in CUDA and HIP are in-order.

• A global default stream is available - simplifying the coordination with external libraries.

• Initial implementation of SYCL backends used in-order queues.

• CEED-PHASTA uses PETSc

§ For Intel GPUs, PETSc uses Kokkos-SYCL backend

§ Kokkos-SYCL uses out-of-order SYCL queues

• For synchronization with PETSc, libCEED SYCL inputs SYCL queue from PETSc.

• To use out-of-order queues with the libCEED SYCL implementation, the Intel SYCL extension for 
enqueueing (asynchronous, device-side) enqueue barriers were used.

• Future development will look to use SYCL events to explicitly express data dependencies within 
libCEED.
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Performance Baseline  
• sycl-fluids examples using Blasius test case. 

• Overall time per iteration on A100 was 3.7 sec 

• Overall time per iteration on PVC was 70 seconds

• 3 hotspots identified for both A100 and PVC. 
§ CeedBasisSyclGrad – SYCL kernel

§ CeedBasisSyclInterp – SYCL kernel

§ IJacobian (OpenCL kernel which is online compiled)

Kernel PVC (1 Tile) A100 (CUDA)

IJacobian 29 ms 0.92 ms

Interp 10.7 ms 0.11 ms

Grad 197 ms 1.3 ms
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BASIS GRAD KERNEL
Using microbenchmarks of the kernel

Kernel execution time = 1.33 ms

Inline kernel Kernel in function

Kernel execution time = 5.8 ms
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Use of SYCL specialization constants

Kernel execution time = 1.38 ms
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Further optimizations on CeedBasisGrad 
• Adjust WG size from 1024 to 32. 

• Replace workgroup barrier with nd_item barrier
sycl::group_barrier(work_group)  à work_item.barrier(sycl::access::fence_space::local_space)

• Remove IGC runtime memory checks by using specialization constant. 
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:100 :Adding additional control 
flow due to presence of generic address space operations
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:185 :Adding additional control 
flow due to presence of generic address space operations
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:187 :Adding additional control 
flow due to presence of generic address space operations
warning: from dir:/home/vmadananth/PHASTA_aesp_CNDA/CEED-PHASTA/libCEED/backends/sycl-ref from file:ceed-sycl-ref-basis.sycl.cpp line:0 :Adding additional control flow 
due to presence of generic address space operations

Kernel PVC (1 Tile) A100 
IJacobian 29ms 0.9ms
Interp 1.75ms 0.11ms
Grad 4.8ms 1.3ms
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Optimizations performed on IJacobian
• IJacobian kernel was using default range. The compiler was setting the workgroup size to 32. 

§ Changing to default nd_range and setting WG size to 384 (CUDA) improved performance slightly. 

• Reducing register spills
§ Building with AOT did not show any warnings on spills as this was OpenCL kernel. 
§ Inspected assembly by setting the following env variables – 

§ IGC_DumpToCurrentDir=1,  IGC_DumpToCurrentDir=1
§ For more IGC env variables - https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md
§ Generates asm for all kernels. To search for kernel names – 

for f in ./*.asm; do echo "------------"; echo $f; cat $f | grep "\/\/.kernel"; done

https://github.com/intel/intel-graphics-compiler/blob/master/documentation/configuration_flags.md
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Reducing spills 
• By default , PVC has 128 64-byte registers allocated per thread.

• Registers spills can be expensive. Improve register usage per thread by 
§ Increasing the registers available per thread to 256

§ Running in lower SIMD width 

• Passing large register file with online compilation. 
ze_module_desc_t lz_mod_desc = {ZE_STRUCTURE_TYPE_MODULE_DESC,
                                  nullptr,
                                  ZE_MODULE_FORMAT_IL_SPIRV,
                                  il_binary.size(),

                                  il_binary.data(),
                                  "-ze-opt-large-register-file",   // flags
                                  nullptr};

• Enforcing SIMD16 with OpenCL kernel
__attribute__(intel_reqd_sub_group_size(16))

https://registry.khronos.org/OpenCL/extensions/intel/cl_intel_required_subgroup_size.html 
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Where does performance stand currently

Kernel A100 PVC (before 
optimization) 

PVC (after 
optimizations)

IJacobian 0.9 ms 29 ms 1.1 ms

Grad 1.3 ms 6.4 ms 4.5 ms

Total time per 
timestep 3.6 s 70 s 11 s

*This is still a work in progress, and not a representative of performance between two hardware
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Key Takeaways

• Allows for NVRTC-like runtime compilation
• Currently restricted to use of OpenCL C/LevelZero kernels (interop)
• In future, likely to extend support for SYCL kernel code

Intel online compiler 
SYCL extension

• Specialization constants - useful for optimizing code with parametric 
values. Runtime increases with number of spec. constants

• Use of appropriate workgroup sizes and barriers.
• For register-heavy kernels – large GRF + smaller SIMD width

Optimization 
Strategies

• Systematic profiling of online compiled code for further insights on 
performance bottlenecks.

• Use of the updated SYCL kernel compiler with SYCL user functions.
Future Work
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