
Dynamic task fusion with SYCL for an explicit
hyperbolic equation system solver with dynamic
AMR and local time stepping
ISC 2022
Andrew Mallinson, Adam Tuft, Tobias Weinzierl

May 9, 2022

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 1 / 25



Outline

Motivation: the science case

Numerical Methodology

Tasking front-end

Task fusion

Summary

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 2 / 25



Spherical accretion of collisional gas

Setup:
▶ Hubble expansion: expand coordinate system
▶ Gas: simple Euler equation
▶ Gravity (with some initial overdensity in the centre): some additional forces
⇒ some turn-around effect

Research question:
▶ Maybe not plain potential of Poisson equation
▶ Solution’s self-similarity

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 3 / 25



Code requirements

▶ Hydrodynamics: Finite Volumes
▶ Hubble expansion vs. contraction: AMR around “shock”
▶ Mass accreditation: Dynamic AMR
▶ Long-term, very accurate simulation: HPC

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 4 / 25



AMR dilemma

Patch-wise
p Baseline AoS SoA in-situ
3 1.12 · 10−6 8.28 · 10−7 8.81 · 10−7 4.27 · 10−7

4 9.11 · 10−7 8.07 · 10−7 8.10 · 10−7 3.93 · 10−7

7 7.91 · 10−7 7.43 · 10−7 7.85 · 10−7 3.54 · 10−7

8 7.84 · 10−7 7.67 · 10−7 7.70 · 10−7 3.52 · 10−7

15 7.99 · 10−7 7.48 · 10−7 7.72 · 10−7 3.44 · 10−7

16 7.95 · 10−7 7.41 · 10−7 7.62 · 10−7 3.45 · 10−7

3 1.84 · 10−5 1.73 · 10−5 1.70 · 10−5 1.17 · 10−5

4 1.68 · 10−5 1.65 · 10−5 1.65 · 10−5 1.12 · 10−5

7 1.56 · 10−5 1.57 · 10−5 1.56 · 10−5 1.02 · 10−5

8 1.55 · 10−5 1.70 · 10−5 1.68 · 10−5 1.03 · 10−5

Cost per FV update; [t]=s; lower is better; AMD EPYC 7702; 2d (top) vs. 3d (bottom)

Small patches:
▶ High inter-patch concurrency
▶ Accurate adaptivity

Large patches:
▶ High intra-patch concurrency (SIMD)
▶ Low administration overhead

Punchline: Algorithms and AMR would want us to use small
patches (aka tasks later on). Vector registers (and GPUs later on) would
like us to use large (Cartesian) patches.

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 5 / 25



Outline

Motivation: the science case

Numerical Methodology

Tasking front-end

Task fusion

Summary

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 6 / 25



An Exascale Hyperbolic PDE solver Engine

Vision: Allow groups with decent computational background to
write an exascale solver for

M
∂

∂t
Q +∇ · F(Q) +

∑
i

Bi
∂Q
∂xi

= S +
∑

δ

within a year.

▶ Engine terminology: You buy into our compute-n-feel and tailor it towards your
needs.

▶ User view: Focus what to compute, leave the other stuff to engine
(clean software design)

▶ Software view: Engine decides how, when and where to compute
(efficiency)

⇒ Radical (academic) interpretation of separation-of-concerns

Development paradigm: Trade software quality (ease of use, separa-

tion of concerns, abstraction, performance portability) for methodological free-
dom (and that last bit of efficiency).

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 7 / 25



ExaHyPE 2’s engine ingredients

▶ Spatial discretisation
▶ Octree/spacetree formalism for

dynamically adaptive Cartesian
meshes

▶ Block-structured dynamic AMR for low
order methods

▶ Cell-based AMR for higher order
methods

⇒ Peano AMR framework
▶ Numerical schemes

▶ Block-structured Finite Volumes
▶ Runge-Kutta DG (experimental)
▶ ADER-DG (experimental)
▶ Tracer (Particle-in-Cell)
▶ SPH (experimental)

(all explicit)
⇒ ExaHyPE2 layer above Peano

▶ Target architecture
▶ MPI+X
▶ OpenMP tasking + OpenMP offloading
▶ C++ tasking
▶ Intel TBB tasking + SYCL offloading

(no genuine GPU support; strict
offloading/accelerator paradigm)

⇒ Peano’s MPI/tasking layer plus
ExaHyPE2 compute kernels

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 8 / 25



Classic domain decomposition: MPI+X

SFC-based non-overlapping domain decomposition:
▶ Peano runs through subpartitions (SPMD+BSP with thread overbooking)
▶ Logically no difference between MPI and shared memory parallelisation
▶ Data copying after each traversal
▶ Load (re-)balancing realised through plug-ins

Separation of concerns:
▶ You do not know when calculations are triggered (in-between SPMD/BSP sync points)
▶ You do not know where calculations are triggered (core/rank)
▶ Consistency code hidden from user
▶ You do not know how data are distributed (in default mode)

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 9 / 25



Intra-kernel parallelism (FV/block-structured only)

Nested loops over “micro-kernels”:
▶ Evaluate flux, ncp, source, . . . or add outcome of flux, ncp, source, . . . to solution
▶ Exploit knowledge about underlying temporary data structures (AoS vs. SoA

vs. AoSoA)
▶ Available with normal (virtual) and stateless (static) callback to user code

Flavours of overall kernel:
▶ Loop orderings
▶ Evaluate all terms first or update in-situ
▶ Data layout for temporary data (such as flux outcomes)
▶ Use static or virtual callbacks
▶ Use C++ Cartesian loops, nested loops with OpenMP annotations, SYCL’s ranges

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 10 / 25



Enclave tasking

Idea: Tasks=intermediate parallelisation layer between SPMD+BSP and kernels

Riemann

Riemann

Corrector

STP

Corrector

▶ Mark all cells along MPI boundary and resolution transitions ⇒ skeleton grid
(those are involved in MPI and might refine/coarsen)
▶ reordering of these cells challenging
▶ these cells are along critical path in task graph (latency sensitive)

▶ Remaining cells define real tasks ⇒ skeleton cells
▶ overlap with MPI and AMR
▶ compensate for BSP imbalances

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 11 / 25



Outline

Motivation: the science case

Numerical Methodology

Tasking front-end

Task fusion

Summary

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 12 / 25



Task creation pattern

few, large
domain traversal
tasks

primary sweep

secondary sweep

enclave tasks

▶ Primary domain sweep: create task and run the critical ones
▶ Secondary domain sweep: work in enclave task outcomes

Properties:
▶ Producer-consumer pattern
▶ Burst of large number of spawned ready tasks

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 13 / 25



A native task realisation in OpenMP?

0
100

101
102
103
104
105

P
en

d
in

g
ta

sk
s

native

hold-back

backfill

0 100 200 300

Simulation time in seconds

0

2

4

B
S

P
ta

sk
s

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 14 / 25



A native task realisation in OpenMP?

0
100

101
102
103
104
105

P
en

d
in

g
ta

sk
s

native

hold-back

backfill

0 100 200 300

Simulation time in seconds

0

2

4

B
S

P
ta

sk
s

From H. Schulz, G. Brito Gadeschi, O. Rudyy,

T. Weinzierl: Task inefficiency patterns for a wave

equation solver, IWOMP 2021

▶ Performance flaws for large meshes
and GNU

⇒ Process tasks immediately
(this is allowed according to standard)

▶ Performance flaws for imbalanced
BSP, heavy tasks and LLVM

⇒ Switch to other heavy task at BSP end
and thus make thread unavailable for
upcoming urgent tasks

▶ Introduce one manual queue and hold
back tasks

⇒ Performance flaws on NUMA
machines (AMD)

▶ Introduce one manual queue per core
and hold back tasks

⇒ Software design (two replicated layers of task

queues) and overhead

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 15 / 25



Task architecture in oneAPI

1 2 4 8 16 32 64 124
cores

26

27

28

29

210

211

212

213

wa
llt

im
e

bsp, fixed
bsp, adaptive
bsp, local
native
fill
specialise immediately
specialise late

1 2 4 8 16 32 64 124
cores

28

29

210

211

212

wa
llt

im
e

bsp, fixed
bsp, adaptive
bsp, local
native
fill
specialise immediately
specialise late
batch(2) immediately
batch(2) late
batch(4) immediately
batch(4) late
batch(8) immediately
batch(8) late

Left: OpenMP, right: oneTBB; AMD EPYC 7702

▶ SYCL queues are not an option as our tasks have states (virtual function calls)
▶ oneTBB offers ::tbb::task group (direct fit to paradigm)

▶ Better than OpenMP for small core counts, OpenMP faster for large core counts
Open questions:
▶ SYCL queues which support virtual functions
▶ Swap in tasks from oneAPI queues at end of (BSP) task group
▶ Process only some tasks from group (backgroundTaskGroup.waitForSomeTasks(); )

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 16 / 25



Outline

Motivation: the science case

Numerical Methodology

Tasking front-end

Task fusion

Summary

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 17 / 25



Aggregate multiple tasks

▶ Idea:
▶ Label stateless tasks within OneTBB task group with identifier
▶ Assemble k tasks into one large meta task

▶ Flavours:
▶ Assemble tasks immediately when we span
▶ Assemble tasks late when BSP section has nothing else to do

▶ Opportunities:
▶ Reduce pressure on task queues
▶ Inline into templated compute kernel
▶ Permute loops once more
⇒ Vectorise over multiple kernel calls
⇒ Offload

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 18 / 25



Batched vs. patch-wise kernels

Missing ; want to f i n i s h assessment f i r s t

Missing ; want to f i n i s h assessment f i r s t

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 19 / 25



Performance on host

1 2 4 8 16 32 64 124
cores

26

27

28

29

210

211

212

213

wa
llt

im
e

bsp, fixed
bsp, adaptive
bsp, local
native
fill
specialise immediately
specialise late

▶ BSP alone is not a good idea
▶ Specialisation is expensive, i.e. run immediately
▶ Fusion into task assemblies does not pay off (not shown)
▶ Specialisation effect significant for low AI, insignificant for high AI (not shown)

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 20 / 25



Performance on the GPU (OpenMP)

1 2 4 8 16 32 64 128 256 512 1024 2048
assembled patches

10 7

10 6

10 5

tim
e 

pe
r F

V 
up

da
te

 [t
]=

s

Throughput for 173 Cartesian patches
baseline
patch-wise, AoS
patch-wise, SoA
patch-wise, AoSoA
batched, AoS
batched, SoA
batched, AoSoA

▶ Task assembly is a must
▶ Once the task assemblies are large enough, switching batched (multi-kernel)

compute routines is an option
▶ AoS is unfortunate choice for internal (temporary) data structures

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 21 / 25



Three more things

Open issues:
▶ Issuing SYCL GPU calls from multiple tasks does not work at the moment
▶ NUMA impact of whole concept not clear
▶ Balancing between multiple SYCL queues not possible

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 22 / 25



Outline

Motivation: the science case

Numerical Methodology

Tasking front-end

Task fusion

Summary

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 23 / 25



Summary

Take away: If people tell you that you need reasonably large
patches in block-structured AMR to get high performance, you
should challenge this statement!

▶ Task group concept direct match to our software architecture
▶ Mirror priorities via hierarchy of task groups
▶ Hold back some tasks in dedicated groups

▶ Open questions
▶ Task migration between groups (flag ready tasks and steal tasks)
▶ NUMA affinity preserved
▶ Process only some tasks rather than all in one rush

▶ Flaws
▶ Having both SYCL queues and task groups is not nice (support virtual calls in SYCL

queues)
▶ Race condition on GPUs requires manual synchronisation

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 24 / 25



Acknowledgements

The authors acknowledge the support through the embedded CSE programme of the ARCHER2 UK National

Supercomputing Service (http://www.archer2.ac.uk) under grant no ARCHER2-eCSE04-2, Durham’s oneAPI

Academic Centre of Excellence made by Intel, ExCALIBUR’s Phase Ia grant ExaClaw (EP/V00154X/1) and

ExCALIBUR’s cross-cutting project EX20-9 Exposing Parallelism: Task Parallelism (grant ESA 10 CDEL). They

furthermore received support through the European Research Council via grant ERC-StG-716532-PUNCA, the

STFC Consolidated Grants ST/T000244/1 and ST/P000541/1, and the China Scholarship Council (CSC)

studentship at Durham University. This work has made use of the Hamilton HPC Service of Durham University.

@hpcsoftware T. Weinzierl et al.: Tasking with a block-structured FV solver 25 / 25


	Motivation: the science case
	Numerical Methodology
	Tasking front-end
	Task fusion
	Summary

