
SYCL Support for Continental-Scale Ecological Observations: Scalable and Portable Blending of Massive Image Mosaics

Dr. Steve Petruzza, Dr. Valerio Pascucci

The University of Utah & Lawrence Livermore National Laboratory Intel oneAPI Center of Excellence Utah State University

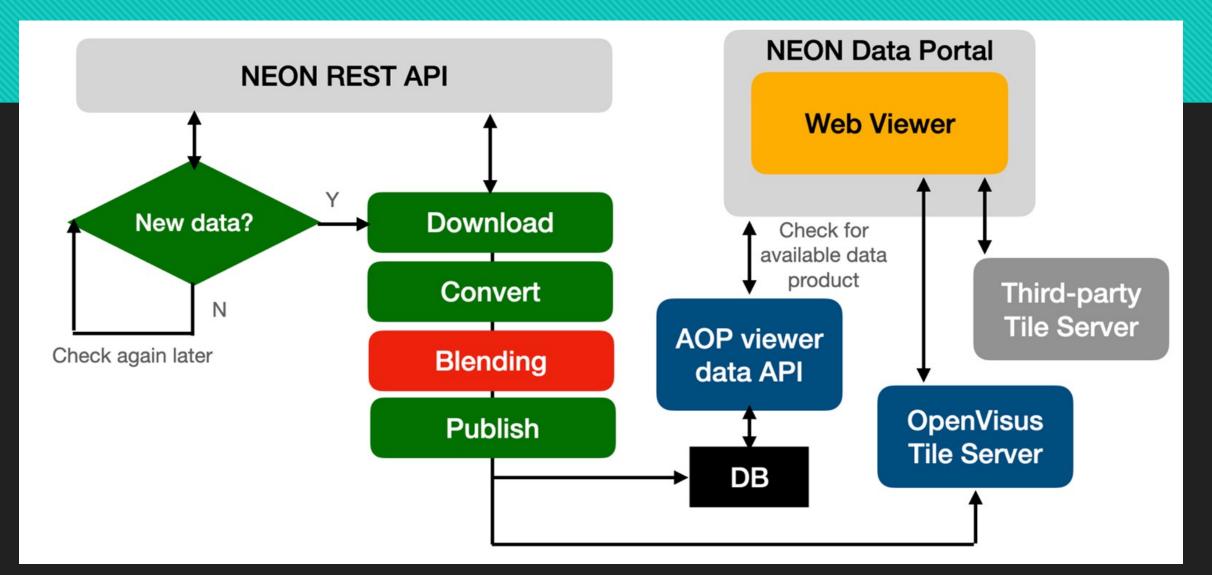
National Ecological Observatory

NEON data

- NEON has a large amount of data that is shared with the community through their data portal
- For some data, such as sensor measurements, the portal provides an **interactive** navigation system
- For others, like Airborne Observation Platforms data, there is a long list of image files...
- There is a need to present all AOP data interactively, where the users can preview, navigate, and select/access/download the data they need

NEON Airborne Operational Platform Data

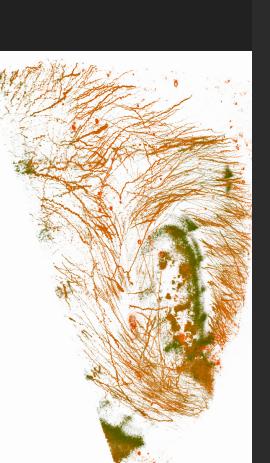
- NEON National Ecological Observatory Network
- 59 AOP sites
- 1-2 datasets per site/year
- Dataset size range from 20 to 300GB
- Total data collection 100s TBs

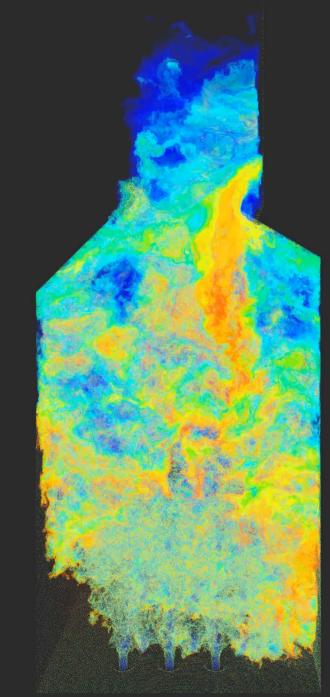

Access to Airborne Remote Sensing Data

AOP Data to Hard Drive Request × +	~ – 🗆 X	•••	NEON H	igh-resolution orthore $ {\sf X} $	+				
← → C û 🔒 neonscience.org/aop-dat G 🖄 ☆ 🖸 🔯 📷 2 টে 🖗 ⓒ 17 📲 1	 R * I () (i) Other bookmarks 	← → e	' ው	🛛 🔒 https://d	ata.neonscience.org	/data-products/DP3.30010.	.0 🔳	⊠ ☆	Q Sea
		f 1	light for this data pr This pilot data viewe	roduct using the tools below	w to stream different data i	n the Airborne Observation Platfor nto view. Pan and zoom in the view roject at the Univeristy of Utah and	v to stream high	her resolution imag	gery.
AOP Data to Hard Drive Requ	uest	-	iuture. Site (i) Ye	ear (i)				Flight (j)	
There are several ways, users can access airborne data:			ABBY 👻	<	-0			1/1 (June)) -
Download the data from the <u>NEON data portal</u> (recommended for smaller amou	nts of data)				2017	2018			
 Programmatically access the data with the <u>NEON Data API</u> or using the <u>NEON U</u> repo (>1 GB downloads) 	<u>Jtilities</u> GitHub		powered by Open	Visus	ownload	Abby Road, WA June 201	7 Flight 1/1		
Mail in a hard drive to receive your data			FRIE					的物质	
Please fill out the form below if you are interested in receiving a hard drive of AOP da respond with a recommended hard drive size as well as mailing instructions.	ata, and we will				Sale 1	and a s			
Please note that requesters must mail us a SATA drive at least the size of the data th requesting. The drive must be blank.	ney are								
First Name				Nor Is					
						A PARTY			
Last Name							-355 A		
Email					and and a subset of the second s	arre- anne an			A CONTRACTOR OF

Privacy - Terms

Email


Data analysis and visualization pipeline

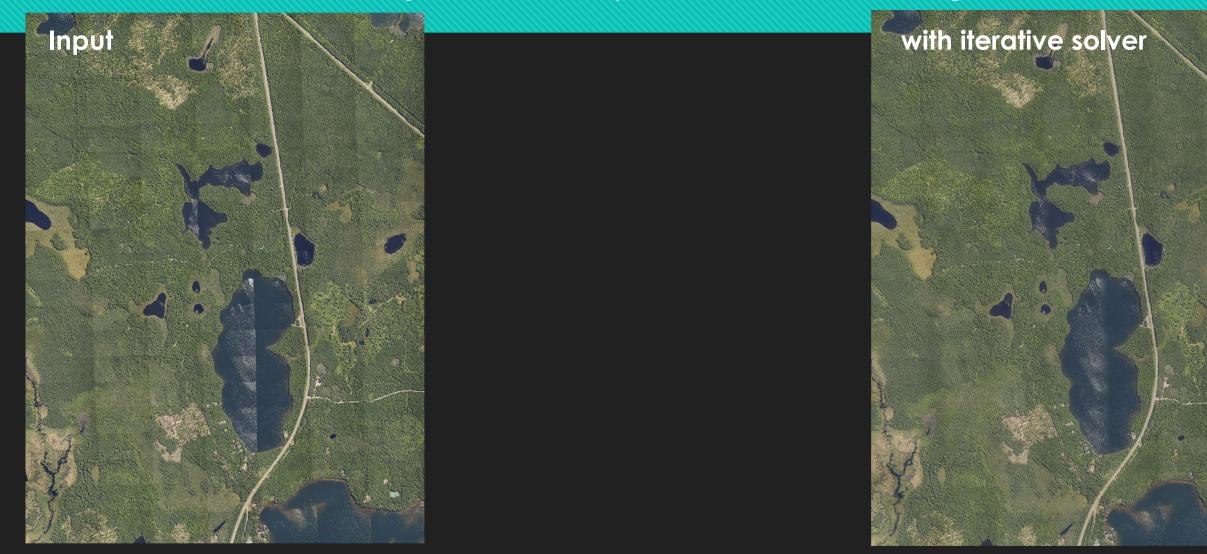


OpenVisus streaming visualization powered by Intel OSPRay

• Large scale combustion simulations

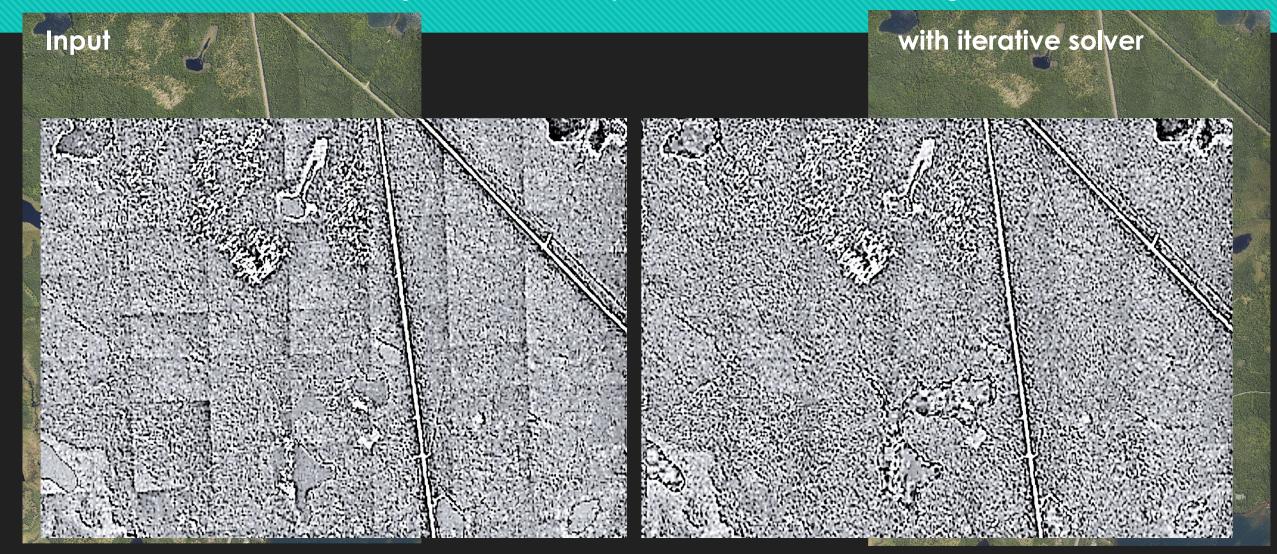
- Neuroscience data (600GB microscopy scan of Macaque monkey visual cortex)
- OpenVisus data streaming for large scale simulation
- High quality rendering at high framerate on local workstations using Intel OSPRay

Gradient domain image processing

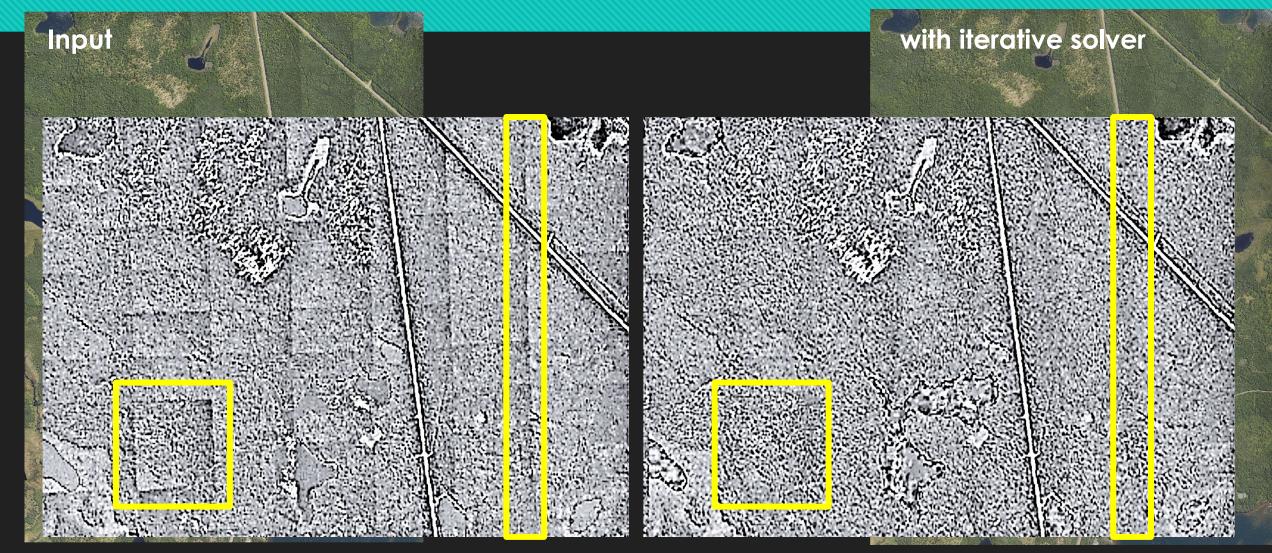

Gradient domain image processing

• images processed in the gradient space (not pixel)

- find the closest smooth image to the guiding gradient with a minimal least squared error
- O equivalent to solving a 2D Poisson equation
 - O direct solutions can be fast using FFT, but with low accuracy
 - or by discretizing the equations into a large linear system that can be solved iteratively (e.g., Conjugate Gradient)
- Requires to build and solve the system in memory


Challenges with NEON AOP data

Remove major artifacts that prevent a scientific investigation


Challenges with NEON AOP data

Remove major artifacts that prevent a scientific investigation

Challenges with NEON AOP data

Remove major artifacts that prevent a scientific investigation

Code conversion from CUDA to SYCL

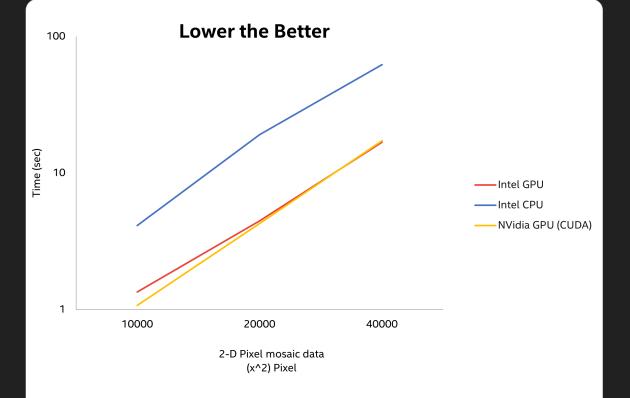
Name
•
CMakeLists.txt
SOLVER.cu
🗋 common.h
helper_cuda.h
helper_string.h
🗋 main.cpp
poisson_solver.cpp
poisson_solver.h

Name
•
MainSourceFiles.yaml
SOLVER.dp.cpp
🗋 common.h
helper_cuda.h
helper_cuda.h.yaml
helper_string.h
🗋 main.cpp
poisson_solver.cpp.dp.cpp
poisson_solver.h
poisson_solver.h.yaml

Code conversion from CUDA to SYCL

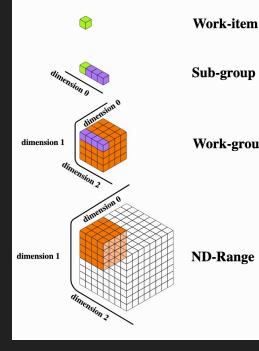
poisson_solver / cg-solver / src / SOLVER.cu poisson_solver / cg-solver / sycl_converted / SOLVER.dp.cpp spetruzza more testing clean up spetruzza add converted sycl code Code Blame Executable File · 269 lines (210 loc) · 8.47 KB Blame 617 lines (561 loc) · 29.9 KB Code #include <cuda.h> #include <sycl/sycl.hpp> 1 #include <cuda runtime.h> 2 2 #include <dpct/dpct.hpp> 3 #include <cuda_runtime_api.h> #include "helper_cuda.h" 3 #include "helper_cuda.h" 4 #include <stdio.h> 4 #include <stdio.h> 5 #include <dpct/blas_utils.hpp> 5 #include <cublas.h> 6 6 #include <cusparse.h> 7 #include <dpct/sparse_utils.hpp> 8 #include <time.h> 8 #include "common.h" 9 #include <time.h> 9 #include <iostream> 10 #include "common.h" 10 11 #include <iostream> 11 #ifndef clamp 12 12 13 #define clamp(value,a,b) (((value)<(a))?(a):(((value)>(b))?(b):(value))) #ifndef clamp 13 #endif 14 #define clamp(value,a,b) (((value)<(a))?(a):(((value)>(b))?(b):(value))) 14 15 #endif 15 _global__void mult_noshared(int dimx, int dimy, const float3 *x_old, float3 *x, uchar3 *map_data){ 16 16 int i = blockIdx.x * blockDim.x + threadIdx.x; 17 17 void mult_noshared(int dimx, int dimy, const sycl::float3 *x_old, 18 int j = blockIdx.y * blockDim.y + threadIdx.y; sycl::float3 *x, sycl::uchar3 *map_data, 18 int idx = j*dimx+i; 19 const sycl::nd_item<3> &item_ct1) { 19 20 int i = item_ct1.get_group(2) * item_ct1.get_local_range(2) + 20 if(i < dimx && j < dimy && map_data[idx].z != 255){ 21 item_ct1.get_local_id(2); 21 int x0 = idx-1; 22 22 int j = item_ct1.get_group(1) * item_ct1.get_local_range(1) + 23 int x1 = idx+1;item_ct1.get_local_id(1); 23 int y0 = idx-dimx; 24 int idx = j*dimx+i; 24 int y1 = idx+dimx; 25 25 26 if (i < dimx && j < dimy && map_data[idx].z() != 255) { 26 27 float3 temp; 27 int x0 = idx-1;

Experimental study: multiple solver iterations


Prior Intel[®] DevCloud for oneAPI

Intel CPU: 11th Gen Intel[®] Core[™] i9-11900KB @ 3.30GHz Intel GPU: Intel[®] Xeon[®] E-2176 P630 processors (2018)

Experimental Study: Increasing problem size on different computing platforms



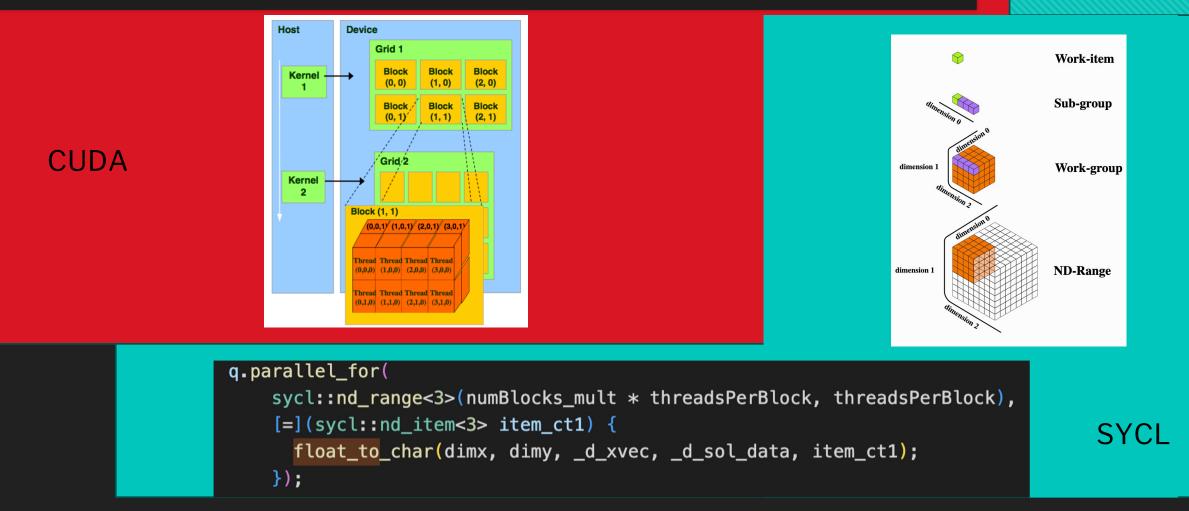
- CPU Intel[®] Xeon[®] Platinum 8480
- GPU Intel[®] Data Center GPU Max 1100
- GPU Nvidia RTX A6000

- Data:
- Results_v1
- Results_v2

Execution Model

1	_		
,		CUDA	SYCL
		thread	work-item
սթ		warp	sub-group
		block	work-group
		grid	ND-range

Original CODA Code	Migrated SYCL Code			
global void foo() { int a = threadIdx.x; }	<pre>void foo(sycl::nd_item<3> item) { int a = item.get_local_id(2); }</pre>			
<pre>int main() { dim3 size_1(100, 200, 300); dim3 size_2(5, 10, 20); foo<<<size_1, size_2="">>>(); }</size_1,></pre>	<pre>int main() { sycl::queue q; sycl::range<3> size_1(300, 200, 100); sycl::range<3> size_2(20, 10, 5); q.parallel_for(sycl::nd_range<3>(size_1 * size_2, size_2), [=](sycl::nd_item<3> item) [[sycl::reqd_sub_group_size(32)]] { foo(item); }); }</pre>			


Migrated SYCL Code

Original CUDA Code

Migration CUDA->SYCL

Kernel functions

float_to_char<<<numBlocks_mult, threadsPerBlock>>>(dimx, dimy, _d_xvec, _d_sol_data);

Memory Model

Original CUDA Code	Migrated SYCL Code	
global void foo() {	<pre>void foo(int *shm) {</pre>	
shared int shm[16];	shm[0] = 2;	
shm[0] = 2;	}	
}		Shared memory
	int main() {	/
<pre>int main() {</pre>	sycl::queue q;	
foo<<<1, 1>>>();	<pre>q.submit([&](sycl::handler &cgh) {</pre>	
}		
	<pre>sycl::local_accessor<int></int></pre>	
	<pre>shm_acc(sycl::range<1>(16), cgh);</pre>	
	cgh.parallel_for(
	<pre>sycl::nd range<3>(sycl::range<3>(1, 1,</pre>	

1), sycl::range<3>(1, 1, 1)), [=]
(sycl::nd item<3> item ct1) {

});

});

foo(shm acc.get pointer());

Global, constant and unified memory

Original CUDA Code

void foo() {
 int *mem1, *mem2;

cudaMalloc(&mem1, 10); cudaMallocManaged(&mem2, 10); void foo() {
 sycl::queue q;
 int *mem1, *mem2;

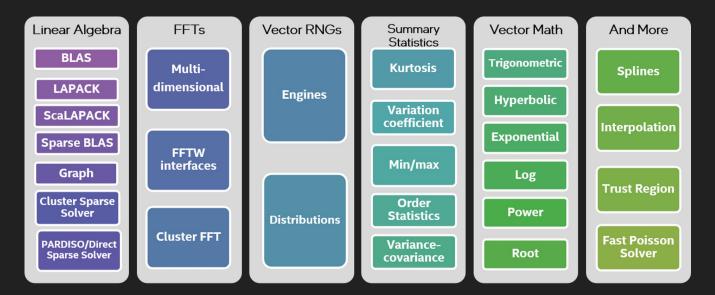
mem1 = sycl::malloc_device<int>(10, q); mem2 = sycl::malloc_shared<int>(10, q);

Migrated SYCL Code

Migrate CUDA->SYCL

CUBLAS -> Intel OneMKL (Math Kernel Library)

rho = cublasSdot(N,(float *)_d_p,1,(float *)_d_p,1);


CUDA

float *res_temp_ptr_ct1 =

```
sycl::malloc_shared<float>(1, dpct::get_default_queue()); Intel OneMKL
```

rho = *res_temp_ptr_ct1;

oneapi::mkl::blas::column_major::dot(q, N,(float *)_d_p,1,(float *)_d_p,1, &rho).wait();

Conclusions

- SYCL enabled portability of software for use in the Cloud on different computing devices
- The Intel OneAPI compatibility tools allowed easy transition from vendor specific implementation of image blending algorithm to SYCL
- Experimental results demonstrated great performance portability
- Next Steps: SYCL implementation of ZFP compression library

Reference: "Interactive Visualization and Portable Image Blending of Massive Aerial Image Mosaics". Steve Petruzza, Brian Summa, Amy Gooch, Christine Laney, Tristan Goulden, John Schreiner, Steven Callahan, Valerio Pascucci. In press at International Workshop on Big Data Analytics for Climate Change, IEEE International Conference on Big Data, 2023