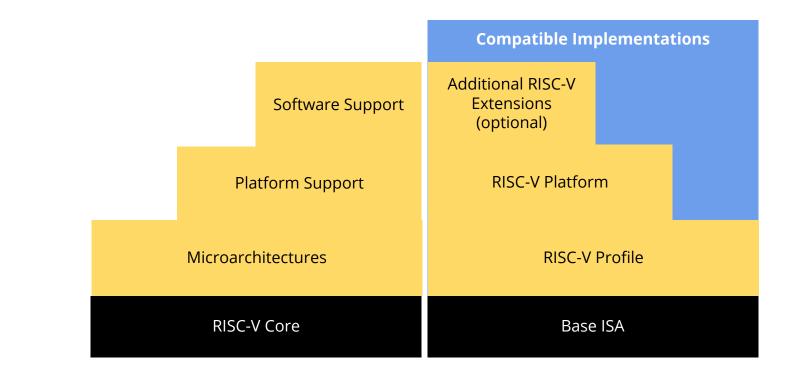
RISC-V®

RISC-V Vectors & oneAPI Accelerating the Future of Heterogeneous Compute

Stephano Cetola, Director of Technical Programs

What is **RISC-V**?

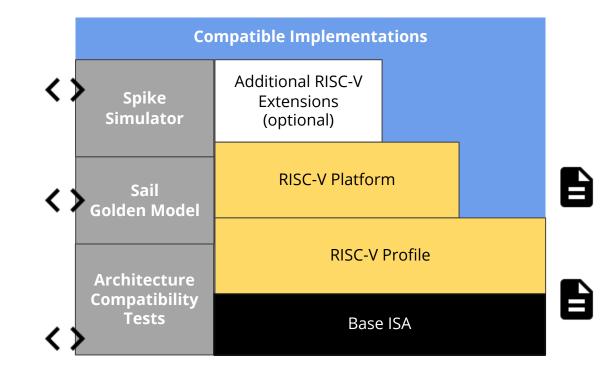
Who is RISC-V


RISC-V International is a global nonprofit association based in Switzerland. Founded in 2015, RISC-V brings together 3k+ members in more than 70 countries across industries and technical disciplines.

RISC-V supports the open RISC-V instruction set architecture, developing additional extensions, tools, and resources paving the way for the next 50 years of computing design and innovation. RISC-V also connects the community and industry through academia, commercialization, and strategic leadership.

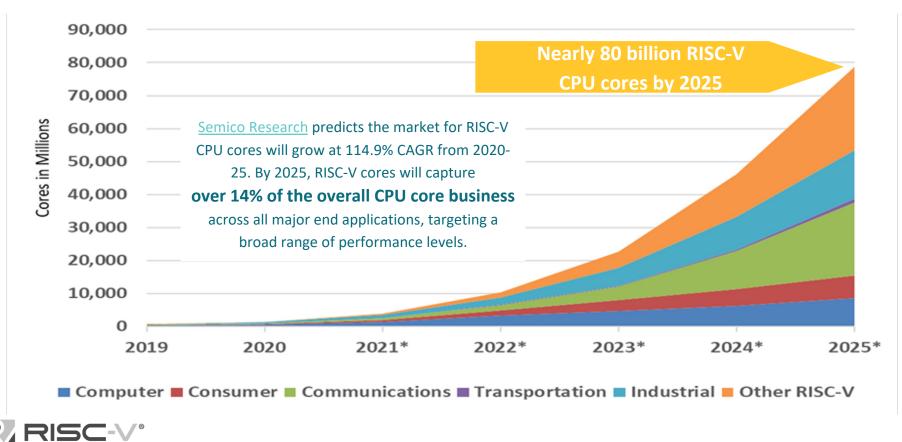
Building Hardware using RISC-V

Standardization, Modularity, and Flexibility


General and differentiated software **Open software** Applications, Linux support, libraries/platforms Expertise, applications, services Academic + Research General and differentiated implementations IP, SoC, FPGA, enhanced functions implementations Open standard Commercial **IP** specifications innovation and Open design tools + Leading industry design tools + software for modular differentiation to software Compilers, Simulators, Tools, designs based solve full on decades of spectrum of investment and Commercial IP and cores compute **Open IP and cores** challenges expertise Provided via ecosystem for differentiated performance and capabilities Modular IP specifications + Architecture compatibility tests Profiles, extensions incl Vector, Security, Memory, Trace + Debug RISC-V Instruction Set Architecture (ISA) Open Standard

Hardware Compatibility using RISC-V

- > Profiles
- > Platforms
- > Sail Golden Model
- > Architecture Tests
- > Spike Simulator


- = Specification Document
- ♦ > = Open Source Code

Who is using **RISC-V**?

Rapid RISC-V Growth

More than 3,100 RISC-V Members across 70 Countries

RISC-V°

3200	111 Chip Soc, IP, FPGA	3 Systems ODM, OEM	
2800			
2400	3 I/O	14 Industry	
2000	Memory, network, storage	Cloud, mobile, HPC, ML, automotive	
1600		100 D	
1200	19 Services	139 Research	
	Fab, design services	Universities, Labs, other alliances	
800	And a		
400	56 Software	2k+Individuals	
0	Dev tools, firmware, OS	RISC-V engineers and advocates	
Q3 Q4 Q1 Q 2015 2015 2016 20	2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 16 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 2	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 2019 2019 2019 2019 2020 2020 2020 2020	
Oct 2022			

RISC-V membership rapid growth of 134% in 2021

Data Center Cloud, HPC

Top providers like Amazon and Alibaba are designing their own chips.

New features specific to HPC such as Vector and larger Virtual address space

Automotive

Transforming from autonomous vehicles to infotainment to safety, the whole vehicle relies on innovative electronics.

AI / ML

Artificial intelligence is incorporated across many areas including Industrial IoT, manufacturing, and financial

(((o)))

Telecom & Communications

Rapid evolution in 5G, handsets, and base stations grows with each generation of hardware and increased capability

Consumer and IoT devices

Incredible innovation is driving volume with billions of connected devices in the next 5-10 years.

A distributed, open architecture decentralizes processing power, reduces latency, and supports IoT performance in low bandwidth environments. RISC-V adoption spans industries

RISC-V will capture 10% of the Automotive market by 2025

- Counterpoint, September 2021

- **MobileEye** vision-based advanced driver assist systems chips capable of 176 trillion ops per second with 12 RISC-V CPU cores.
- Andes ISO 26262 Functional Safety ASIL D Dev Process Certification for RISC-V embedded automotive safety with Andes processors
- **Renesas and SiFive** partner on next-gen, highend RISC-V automotive applications. SiFive will license their RISC-V core IP to Renesas.
- **Imagination Technologies** GPU linked by a RISC-V core for ASIL-B level designs with ISO 26262 safety critical certification.
- **IAR Systems** extended functional safety of its Embedded Workbench sw tool chain to the RISC-V core of NSITEXE, subsidiary of automotive leader Denso.
- **Europe GaNext** simplifies power converters with GaN power semiconductors with better efficiency and compactness for EV chargers.

2020 RISC-V automotive opportunity 4M cores; growing to 150M cores in 2022 and 2.9B cores by 2025. – Deloitte, December 2021

RISC-V Automotive Value Multicore SoC revenue to be \$5.7B in 2022. Advanced RISC-V AI SoCs for High-End Passenger Cars to Reach \$819M by 2027

RISC-V-based AI SoCs will grow **73.6% CAGR to 25B units and \$291B in revenue by 2027** – Semico Research, December 2021

- Alibaba Cloud tops MLPerf Tiny v0.7 Benchmark with its IOT processor
- **Esperanto** accelerating ML Recommendation With Over 1,000 RISC-V/Tensor Processors on ET-SoC-1 Chip
- **StarFive** released the world's first RISC-V AI visual processing platform
- **Andes** released superscalar multicore and L2 cache controller processors.
- **NVIDIA CUDA** support on Vortex RISC-V GPGPU enables scaling from 1-core to 32core GPU based on RV32IMF ISA

RISC-V®

- **E4** Monte Cimone Cluster along with DEI-UNIBO contributing to architecture, software, and integration.
- **European Processor Initiative** RISC-V accelerator with first chip Sep 2021
- **Technical University of Munich** (TUM) quantum cryptography chip for quantum computing security demands

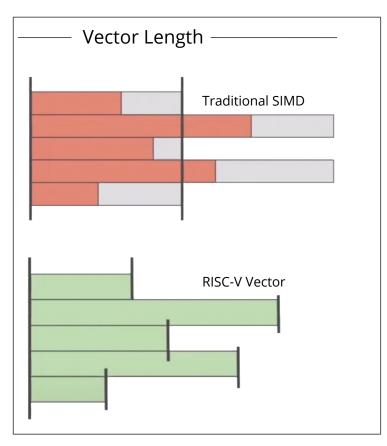
erformance

- **Tactical Computing Labs** HPC-centric software test suite for GCC and LLVM
- **Cortus** is developing a high-performance RISC-V Out-of-Order processor core for the European eProcessor project.
- **De-RISC** HW-SW platform for multi-core RISC-V SoC for safety critical aerospace

Introduction to Vector on RISC-V

RISC-V Vector (RVV)

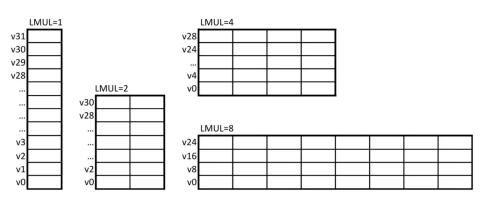
At the end of 2021, RISC-V International ratified version 1.0 of the Vector Extension



- Single RISC-V Extension
- Variable Vector Lengths
- Maps into existing neural network models (multiple maps)
- Allows for small code size and low power consumption
- Range of vector data types and sizes
- Enables open-source extensions

RISC-V Vectors vs Traditional SIMD

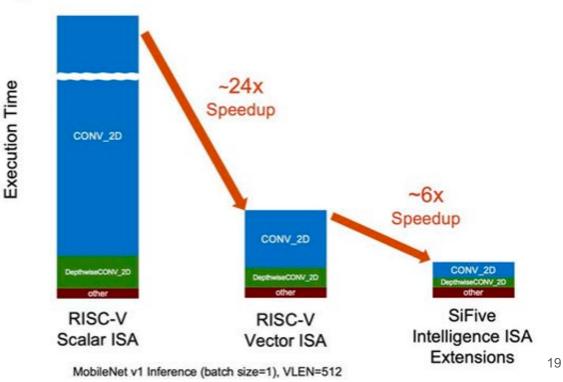
- Variable Vector Register Length
 - Vector width configurable at runtime
 - Up to maximum hardware length (VLEN)
 - Vector ISA is agnostic to VLEN
- Unified Code Base
 - ARM has two different ISAs (Helium & Neon)
 - IA-32 vector instructions were an order of magnitude larger when supporting SIMD vector lengths
- No requirement for dedicated vector data memory



	RVV	ARM SVE	x86 AVX512
Spec supports multiple vector sizes	Yes	Yes	No
VL register	Yes	No	No
Masks	Yes (1)	Yes (16)	Yes (8)
Narrowing/Widening	Yes, LMUL	Yes, 2 instructions	Yes, 2 instructions
Mixed Datatype Vectorization	Uses LMUL	Pack/Unpack	Pack/Unpack
Hardware Unrolling (LMUL)	Yes	No	No
Polymorphic Encoding	Yes, vtype	No	No
Strided Memory Access	Yes	No	No
Gather/Scatter	Yes	Yes	Yes
Structured/Segmented Loads	Yes	Yes	No
Forward Progress on gather/scatter	Vstart	Repeat full instruction	Mask state
Fixed Point Support	Yes	Partial	No
Complex Support	No	Yes	Partial
Reductions	Yes	Yes	No
Register Gather	Yes	Yes	No
Tail Element control	Merge, Agnostic	Merge, Zeroing	Merge, Zeroing ^o
Destructive destination	No	Yes	No 17

LMUL - Multiplying Vector Length

- LMUL parameter that multiplies the number of VLEN registers operated on by each instruction
- Goal Fewer Instructions
 - Large vector data computations
 - More efficient parallel computation (both scalar & vector)
 - Smaller code size, fewer memory accesses



RISC-V Custom Extensions

SiFive Intelligence Extensions Accelerate End-to-End Models

- Reserved opcode space for custom extensions
- Allows for layering of value-add custom extensions (open-source or proprietary)
- Flexibility to push the boundaries
- Cost effective model for R&D

The Future of AI & RISC-V

Vector SIG

ML: <u>https://lists.riscv.org/g/sig-vector</u>

Charter/Docs: https://github.com/riscv-admin/vector

- Finishing Zvfh / Zvfhmin extensions & tests
- Aligning efforts around Packed SIMD extension
- Matrix Multiplication extension

Floating Point SIG

Chair: Kenneth Rovers, Imagination Technologies ML: <u>https://lists.riscv.org/g/sig-fp</u> Charter/Docs: <u>https://github.com/riscv-admin/fp</u> Goals:

- New FP formats and operations
- Move beyond IEEE-754 standard, Zfh/Zfhmin, Vector
- Develop the strategy, gaps, and prioritizations for FP & RISC-V

bfloat16 Task Group

Chair: Ken Dockser, Rivos

ML: <u>https://lists.riscv.org/g/sig-fp</u>

Charter/Docs: https://github.com/riscv-admin/bfloat16

Specification: https://github.com/riscv/riscv-bfloat16

- Extensions for vector and scalar floating-point
- Includes BF16 format and behaviors
- Basic instructions allowing BF16 as an interchange format
 - FP #'s converted between BF16 and other formats like single precision, FP32
- Add widening multiply-add type instructions (BF16 operands, FP32 result)
- Note: more instructions to come...

Software Committees

Platforms definition

Platforms standardization

- Binary compatibility
- Source-code compatibility

ABIs and Firmware Services Bootstrap and Secure Boot Unified Discovery

Reduce the risk in adopting RISC-V

Standardize solutions Reach consensus and document other ideas Avoid fragmentation

Drive enablement and optimization Own and coordinate efforts Enable innovation/differentiation

Toolchains and development tools

(Software) applications enablement

- Compilers and Debuggers
- Optimized runtime libraries
- Code-speed and code-size

Managed Runtimes Simulators and Performance Models

Attract applications to RISC-V

Coming in 2023

- RISC-V Vector C intrinsics Task Group
- AI/ML Special Interest Group
- Vector SIG
 - Matrix Multiply
 - Vector Phase 2
- LLVM Improvements
 - intrinsics
 - autovectorization
- oneAPI Engagement
 - oneDNN
 - OpenMP®
 - OpenCL[™]
 - SYCL[™]

How can you get involved in AI and RISC-V?

RISC-V Technical Community

RISC-V°

- **GitHub** <u>https://github.com/riscv</u>*
- Mailing Lists
 https://lists.riscv.org
- RISC-V Wiki
 <u>https://wiki.riscv.org</u>
- Groups

https://lists.riscv.org/g/sig-

<u>ai-ml</u>

https://lists.riscv.org/g/sig-fp https://lists.riscv.org/g/sig-vector

stephano@riscv.org

