
Early results using Fortran's do concurrent standard
parallelism on Intel GPUs with the ifx compiler

Ronald M. Caplan, Miko M. Stulajter,
Jon A. Linker, and Cooper Downs

Predictive Science Inc.
caplanr@predsci.com

Supported by NSF and NASA

Accelerated computing

Directives and Fortran standard parallelism

Previous implementation results on
NVIDIA GPUs with nvfortran

Preliminary implementation results on
Intel GPUs with ifx

Call to action and future outlook

Agenda 2

Accelerated Computing

Overall performance
l FLOP/s
l Memory Bandwidth
l Specialized hardware
(e.g. ML/DL tensor cores)

Compact performance
l In-house workstations
l Reduce HPC real estate
 Efficient performance
l Lower energy use
l Save money

3

Directives

Comments that the compiler can use to generate
code that the base language does not support (e.g.
parallelism, GPU-offload, data movement, etc.)

Can produce single source code for multiple
targets (GPU, CPU, FPGA, etc.)

Low-risk - can ignore directives and compile as
before

Vendor-independent (subject to implementation)

Great for rapid development and accelerating
legacy codes

Two major directive APIs for accelerated
computing: OpenACC and OpenMP🄬

The OpenMP name is a registered trademark of the OpenMP Architecture Review Board

!$acc enter data copyin(x) create(y)
!$acc parallel loop
 do i=1,n
 y(i) = a*x(i) + b
 enddo

!$acc exit data delete(x) copyout(y)

!$omp target enter data map(to:x) map(alloc:y)
!$omp target teams distribute parallel do
 do i=1,n
 y(i) = a*x(i) + b
 enddo

!$omp end target teams distribute parallel do
!$omp target exit data map(delete:x) map(from:y)

4

OpenACC

OpenMP Target

Fortran Standard Parallelism: Do Concurrent (DC)

ISO Fortran 2008
Indicates loop can be run out-of-order
Can hint to compiler that loop may
be parallelizable
No support for atomics, device
selection, async, conditionals, etc.
Fortran 2023 has added reductions

do concurrent (i=1:N,j=1:M)
 Computation
enddo

do i=1,N
 do j=1,M
 Computation
 enddo
enddo

Compiler Version DO CONCURRENT parallelization support
nvfortran ≥ 20.11 CPU with -stdpar=cpu

GPU with -stdpar=gpu
ifx ≥ 19.1

≥ 23.0
CPU with -fopenmp
GPU with -fopenmp-target-do-concurrent

gfortran ≥ 9 CPU with -ftree-parallelize-loops=<#Threads>

5

do concurrent (i=1:N) reduce(+:sum)
 sum = sum + a(i)
enddo

Portability
github.com/AndiH/gpu-lang-compat

6

Directives vs. Standard Parallelism

do k=1,np
 do j=1,nt
 do i=1,nrm1
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
 enddo
 enddo

enddo

Original Non-Parallelized Code

!$acc enter data copyin(phi,dr_i)
!$acc enter data create(br)
!$acc parallel loop default(present) collapse(3) async(1)
do k=1,np
 do j=1,nt
 do i=1,nrm1
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
 enddo
 enddo

enddo
!$acc wait
!$acc exit data delete(phi,dr_i,br)

OpenACC Parallelized Code

do concurrent (k=1:np,j=1:nt,i=1:nrm1)
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)

enddo

Fortran’s DO CONCURRENT

Longevity (ISO)
Lower code footprint
Less unfamiliar to domain
scientists
For accelerated computing,
directives (e.g. OpenMP) are
currently more portable

Why use DC instead of directives?

These also apply to codes that
already use directives

Previous Implementations Results on NVIDIA GPUs

History of our GPU implementations

2012-3: Wanted to use GPUs, but not with CUDA due to needing code rewrites,
 and multiple code bases in multiple languages (Fortran & C)
2014-5: NVIDIA’s OpenACC implementation mature enough to start using
 it for small tools (DIFFUSE)
2016-7: Implemented OpenACC into a larger code that uses MPI for running on
 multiple GPUs (POT3D)
2018-9: Implemented OpenACC into our production-level MHD code (MAS)
2020: Optimized OpenACC implementations, started using in production runs
2021: Implemented Fortran standard parallelism with
 `do concurrent’ (DC) into DIFFUSE
2022: Implemented DC into POT3D, but retained
 small amount of OpenACC for performance
2023: Implemented DC into MAS, but retained
 small amount of OpenACC for performance

8

OpenMP Target
features and support
starts to be competitive
to OpenACC, but we
already had large
amounts of OpenACC
implemented, and felt
OpenACC was
easier/cleaner to code

Decided to pursue standard
Fortran (stdpar) due to NVIDIA’s
support and Intel’s
announcement of support.
Stdpar allows for cleaner code
and more portability than
OpenACC

O
pe

nA
C

C
Fo

rt
ra

n
D

C

Previous Implementations Results on NVIDIA GPUs: DIFFUSE 9

Small solar surface magnetic field smoothing tool

Integrates 2D spherical surface Laplacian operator
with finite differenceing and super time stepping

Parallelized for CPUs with OpenMP and for GPUs
with OpenACC

We replaced all directives with DC, and the code
retained its performance on multicore CPUs

Stulajter, et. al. “Can Fortran's `do concurrent'
Replace Directives for Accelerated
Computing?” Lecture Notes in Computer
Science, 13194, 3-21. Springer, Cham. (2021)

Previous Implementations Results on NVIDIA GPUs: DIFFUSE
We saw similar performance on NVIDIA GPUs using only DC
This used the default setting of the NVIDIA compiler when
using DC, which activates Unified Managed Memory (UMM)
Alternatively, we can turn off UMM and manually manage
memory with unstructured data movement directives

10

!$acc enter data copyin(a)
!$acc enter data create(b)
...

!$acc update host(a)
...
!$acc host_data use_device(a)
...

!$acc exit data delete(a)

Previous Implementations Results on NVIDIA GPUs: POT3D
POT3D computes approximations of the magnetic field of
the Sun’s lower atmosphere

It is parallelized for CPUs with MPI and multiple GPUs with
MPI+OpenACC

Part of the SPEChpc(TM) 2021 benchmark suite

We converted all “do” loops into DC, and the CPU
performance did not change. DC also added the ability to
run in hybrid MPI+multicore mode (not tested yet)

github.com/predsci/POT3D
“Variations in Finite Difference Potential Fields”
Caplan, et. al.,Ap.J. 915,1 (2021) 44

https://developer.nvidia.com/blog/using-fortran-
standard-parallel-programming-for-gpu-acceleration

11

Previous Implementations Results on NVIDIA GPUs: POT3D
We replaced all directives with DC, letting
UMM handle data management

We saw a ~10% slowdown due to issues
with UMM+MPI
(not present on Grace-Hopper!)

Original performance regained by adding
back OpenACC data directives

Hybrid DC+OpenACC still advantageous
due to large reduction in number of
directives and lines of code, making the
code more domain-scientist friendly

12

predsci.com/mas

Previous Implementations Results on NVIDIA GPUs: MAS 13

Large (~70,000 lines) in-production code for general-
purpose simulations of the Sun’s atmosphere used in solar
physics and space weather research
Solves spherical 3D thermodynamic MHD equations using
implicit & explicit time-stepping with finite-differences and
sparse matrix preconditioned iterative solvers
Parallelized for multiple CPUs with MPI and multiple GPUs
with MPI+OpenACC
We converted “do” loops into DC and the CPU
performance did not change. DC again added the ability
to run in hybrid MPI+multicore mode (not tested yet)
“GPU Acceleration of an Established Solar MHD Code using
OpenACC”. Caplan et. al. J. of Phys.: Conf. Series. ASTRONUM
2018. 1225,1 (2019) 012012
”Acceleration of a production Solar MHD code with Fortran standard
parallelism: From OpenACC to `do concurrent'” Caplan et. al. IEEE
IPDPSW Proceedings., (2023) 582-590.

Previous Implementations Results on NVIDIA GPUs: MAS 14

We were able to run with pure
Fortran using UMM, however the
issues with UMM+MPI severely
limited scaling across GPUs

Adding back OpenACC
data directives restored
original scaling

8 GPUs

Preliminary Implementation Results on INTEL GPUs
To test GPU-acceleration on Intel GPUs with DC, we go
back to using the DIFFUSE tool

We start with the pure Fortran version (zero directives)

Test run is the same as in [Stulajter, et. al. (2021)]

Using the Intel Developer Cloud, we use ifx compiler
v2023.2 on an Intel MAX 1100 Data Center GPU

DIFFUSE is highly memory-bandwidth bound so
performance on the MAX 1100 (1,229 GB/s) expected to
be between an NVIDIA V100 (900 Gb/s) and A100 (1,555
GB/s), where the test takes ~35 seconds on an A100

We first ran the test on a dual-socket Xeon Platinum
8480+ CPU (614 GB/s) and it took a reasonable 95
seconds

15

console.cloud.intel.com

Preliminary Implementation Results on INTEL GPUs

For testing on the MAX GPU, we use the tips shown here:

16

-fiopenmp
-fopenmp-target-do-concurrent
-fopenmp-targets=spir64
-Xopenmp-target-backend "-device pvc"

export LIBOMPTARGET_PLUGIN_PROFILE=T

www.intel.com/content/www/us/en/developer/videos/offload-
fortran-workloads-new-data-center-gpu-max.html

Compiler flags:

We set the following environment variable to profile the results
(adding negligible extra time to the run)

Preliminary Implementation Results on INTEL GPUs
The test ran extremely slow
The profile of the run shows that the slow performance is due to
excesive amounts of CPU-GPU data transfers

17

==
LIBOMPTARGET_PLUGIN_PROFILE(LEVEL0) for OMP DEVICE(0) Intel(R) Data Center GPU Max 1100, Thread 0
--
Kernel 0 : __omp_offloading_10301_bd28a_ax__l1425
Kernel 1 : __omp_offloading_10301_bd28a_ax__l1438
Kernel 2 : __omp_offloading_10301_bd28a_ax__l1443
Kernel 3 : __omp_offloading_10301_bd28a_ax__l1454
Kernel 4 : __omp_offloading_10301_bd28a_diffuse_step_sts__l552
Kernel 5 : __omp_offloading_10301_bd28a_diffuse_step_sts__l565
--
 : Host Time (msec) Device Time (msec)
Name : Total Average Min Max Total Average Min Max Count
--
Compiling : 329.88 329.88 329.88 329.88 0.00 0.00 0.00 0.00 1.00
DataAlloc : 63045.73 0.03 0.00 3.16 0.00 0.00 0.00 0.00 1.81e+06
DataRead (Device to Host) : 2.09e+06 2.16 0.01 15.08 1.44e+06 1.49 0.00 7.40 966000.00
DataWrite (Host to Device): 3.01e+06 1.33 0.00 18.31 1.49e+06 0.66 0.00 7.63 2.25e+06
Kernel 0 : 45135.81 1.12 0.83 2.29 31140.47 0.77 0.75 0.83 40260.00
Kernel 1 : 1787.53 0.04 0.04 0.90 1261.04 0.03 0.03 0.06 40260.00
Kernel 2 : 14269.57 0.35 0.06 2.20 318.11 0.01 0.01 0.04 40260.00
Kernel 3 : 1470.01 0.04 0.02 0.41 377.62 0.01 0.01 0.04 40260.00
Kernel 4 : 36.64 0.61 0.60 0.65 32.84 0.55 0.54 0.56 60.00
Kernel 5 : 30664.22 0.76 0.74 0.95 28215.62 0.70 0.68 0.75 40200.00
===

Total wall clock time: 5331.8 seconds

Preliminary Implementation Results on INTEL GPUs
ifx does not currently have an equivalent to UMM for DC, so to
try to reduce data transfers, we add unstructured data region
directives

OpenACC is (unfortunately) not supported by ifx, so we use the
OpenMP Target equivalents:

18

!$acc enter data copyin(a)
!$acc enter data create(b)
...
... COMPUTE ...
...
!$acc exit data copyout(a)
!$acc exit data delete(b)

!$omp target enter data map(to:a)
!$omp target enter data map(alloc:b)
...
... COMPUTE ...
...
!$omp target exit data map(from:a)
!$omp target exit data map(release:b)

OpenACC OpenMP Target

github.com/intel/intel-application-migration-tool-for-openacc-to-openmp

Preliminary Implementation Results on INTEL GPUs
The run time improved only 15% (4480 seconds),
which is still far too slow due to data transfers

It turns out that ifx currently translates DC into OpenMP Target as:

19

do concurrent (i=1:10)
 x = ...
enddo

This mapping always performs CPU-GPU transfers on every loop, even if the data is
already on the GPU (through OpenMP data regions)

According to the specification, the behavior of an OpenMP Target loop with no mapping
clause is “copy or present” (copy data if needed, but not if the data is already on the GPU)

Changing (or adding user options) how ifx translates DC should be straight forward

!$omp target teams loop map(always,tofrom:x)
do i = 1,10
 x = ...
enddo

Preliminary Implementation Results on INTEL GPUs
To see what performance we can expect with updated mapping, we
converted all DC loops into do loops with unmapped OpenMP target
directives, keeping the unstructured data regions
The test ran much better!

20

==
LIBOMPTARGET_PLUGIN_PROFILE(LEVEL0) for OMP DEVICE(0) Intel(R) Data Center GPU Max 1100, Thread 0
--
Kernel 0 : __omp_offloading_10301_bd3bf_ax__l1454
Kernel 1 : __omp_offloading_10301_bd3bf_ax__l1470
Kernel 2 : __omp_offloading_10301_bd3bf_ax__l1476
Kernel 3 : __omp_offloading_10301_bd3bf_ax__l1488
Kernel 4 : __omp_offloading_10301_bd3bf_diffuse_step_sts__l565
Kernel 5 : __omp_offloading_10301_bd3bf_diffuse_step_sts__l581
--
 : Host Time (msec) Device Time (msec)
Name : Total Average Min Max Total Average Min Max Count
--
Compiling : 372.01 372.01 372.01 372.01 0.00 0.00 0.00 0.00 1.00
DataAlloc : 30.75 0.00 0.00 3.19 0.00 0.00 0.00 0.00 281854.00
DataRead (Device to Host) : 548.55 0.01 0.01 2.90 144.88 0.00 0.00 1.43 80521.00
DataWrite (Host to Device): 513.99 0.01 0.00 14.16 16.82 0.00 0.00 7.36 80554.00
Kernel 0 : 31166.05 0.77 0.74 8.06 30979.28 0.77 0.73 0.84 40260.00
Kernel 1 : 1389.45 0.03 0.03 0.88 1197.80 0.03 0.03 0.08 40260.00
Kernel 2 : 275.31 0.01 0.01 0.04 107.58 0.00 0.00 0.03 40260.00
Kernel 3 : 278.59 0.01 0.01 0.04 116.55 0.00 0.00 0.03 40260.00
Kernel 4 : 31.62 0.53 0.52 0.55 31.28 0.52 0.51 0.54 60.00
Kernel 5 : 26509.14 0.66 0.65 1.02 26345.37 0.66 0.64 0.71 40200.00
==

Total wall clock time: 62.1 seconds

Performance Summary for NVIDIA and INTEL GPUs 21

DC (Pure Fortran) (UMM) 55.2 seconds
DC & OpenMP Target Data 54.2 seconds
OpenMP Target Loops & Data 54.6 seconds

The mapping issue in ifx is expected to be fixed soon, which should yield
efficient results for Intel GPUs DC with OpenMP for data management
To use DC only, a system similar to NVIDIA’s UMM would need to be
implemented/activated in ifx for DC

DC (Pure Fortran) 5331.8 seconds
DC & OpenMP Target Data 4480.0 seconds
OpenMP Target Loops & Data 62.1 seconds

INTEL MAX 1100
(1.2 TB/s Mem Band)

ifx

NVIDIA RTX 3090 Ti
(1.0 TB/s Mem Band)

nvfortran

On the NVIDIA platform, DC codes can be as fast as directive-based codes, with
the best performance obtained by adding some Open(ACC|MP) data directives

The Intel platform’s support for DC is just beginning, and can yield decent
performance on compute kernels

With some manual OpenMP data directives and further compiler updates, DC
codes are expected to run well on Intel GPUs in the near future

With the portability of DC GPU-acceleration on NVIDIA and Intel, there is an
incentive for an AMD implementation to be developed

Call to Action and Future Outlook 22

Try Fortran’s do concurrent (DC)
to run your legacy (and new) codes on GPUs!

EXTRA: Preliminary Results on Consumer INTEL GPUs
We also tested the run on an Intel Arc A750 Limited Edition GPU
(512 GB/s Memory Bandwidth)

We use the OpenMP Target Loops & Data version of the code

The Arc GPUs do not have hardware for double precision
FLOPs, but can compute them using emulation:

23

-fiopenmp -fopenmp-targets=spir64
-Xopenmp-target-backend "-device arc"

export IGC_EnableDPEmulation=1
export SYCL_DEVICE_WHITE_LIST=""
export OverrideDefaultFP64Settings=1

Compiler flags:

Total wall clock time:
161.2 seconds

Rocky Linux 9.2, Kernel 6.3.4-1, ifx 2024.0
Resizable bar enabled

