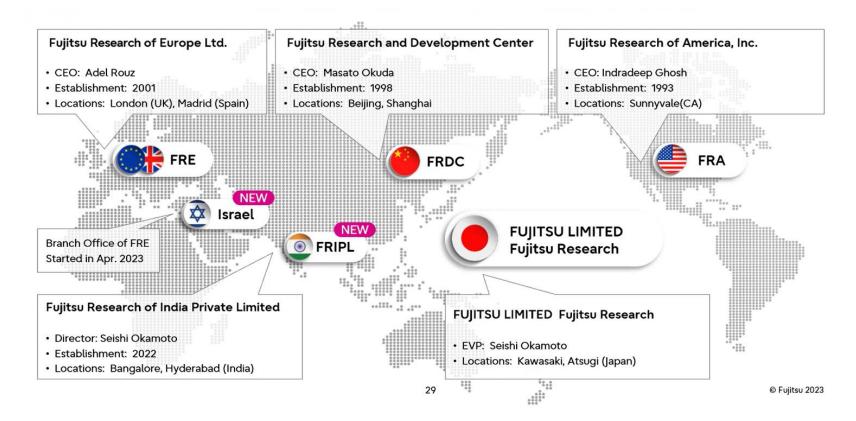
Democratizing the use of AI with -FUJITSU MONAKA

oneAPI Dev Summit on AI and HPC 2023

Priyanka Sharma, PhD

Director, Software Engineering MONAKA SW R&D (HPC AI) Centre Fujitsu Research of India and a submitted of the submitted of the

A


© RIKEN

The present generation is witnessing the fastest technological revolutions of all times and AI and high-end Compute is its biggest enabler!!

Fujitsu's commitment to R&D and innovations for sustainable digital transformation

High-speed/high-precision quantum chemical calculations can be performed without expertise

Zero-emission materials

Halve the development time of new energy materials with Al x Computing technology and contribute to realizing a sustainable world

Large-scale industrial design

Fusion of computing and design optimizes designing that realizes comfortability for people and excellent functionality Drug discovery without side effects

Using massively parallel computing power of a supercomputer, analyze numerous proteins and develop drugs with fewer side effects Personalized healthcare

Analyze a patient's genetic information using AI that is accelerated by computing power and select the appropriate treatment for each patient

Computing Workload Broker

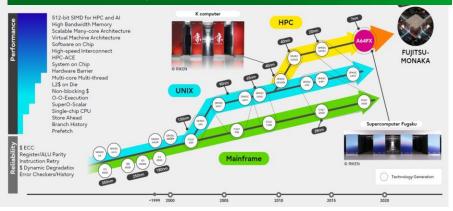
First in the world! Technology for easily utilizing hybrid calculation of quantum and HPC

Quantum Computer/Simulator

AI Accelerator

CPU (FUJITSU - MONAKA)

MONAKA is backed by Fujitsu's 60 year old legacy in supercomputing domain!



HPL-AI

No.3 (*2)

FUITSU

Fugaku, the fastest supercomputer of the world! 64FX Its built using more than 152K Fujitsu's A64FX Arm CPUs HPCG GRAPH500 TOP500 Real-world **Big Data** Floating-point Machine Learning Computation Processing Computation No.1 (*1)

No.2 (*2)

(*2) Ranked No.1 for 4 consecutive terms until Nov 2021

Solving Social Issues with Computing

No.1 (*1)

(*1) 8 consecutive terms since June 2020

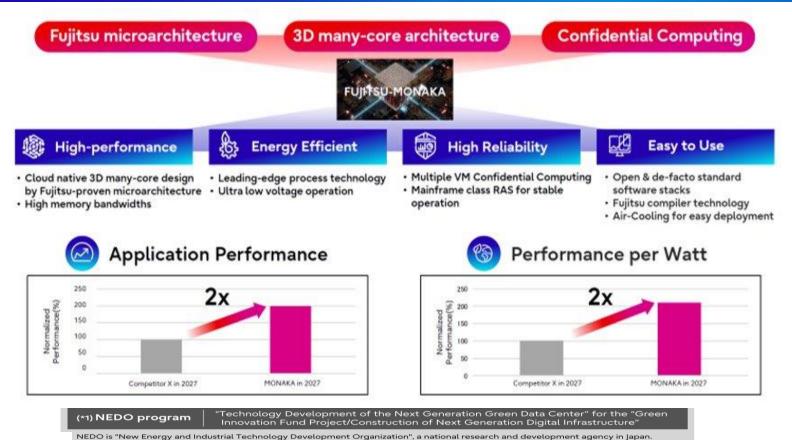
Achievements of the supercomputer Fugaku*

*Powered by A64FX, Fujitsu's world-leading Arm CPU

Bell Prize in 2020

Our 60 year old legacy in HPC!

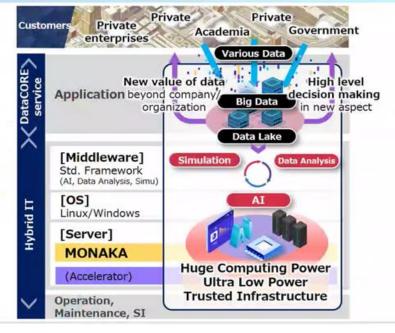
MONAKA (2nm Arm CPU) Hardware architecture launch video (released during SC 2023, Denver, USA)


FUĴĨTSU

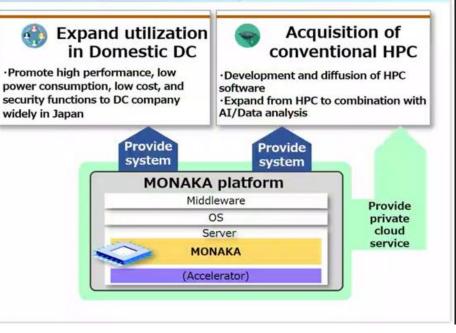
NEW CPU: FUJITSU-MONAKA

Arm-based 2nm CPU FUJITSU-MONAKA

FUJITSU PUBLIC


Fujitsu has been selected for the national initiative along with NEC Corporation, AIO Core Co., Ltd., KIOXIA Corporation, Fujitsu Optical Components Limited and KYOCERA Corporation.

MONAKA's Business Focus

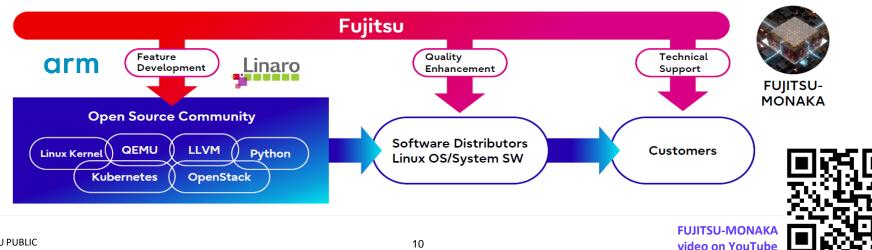

Supporting society by Computing power

Strengthen technology foundation in Horizontal Areas and contribute to the business in Vertical Areas where huge computing power is required

Promote low power consumption as an advantage in proceeding business

•Adoption widely expanded to domestic DC and contribute to environmental issues by promoting low-power DC •Continued acquisition of HPC for private sector and academia

Software Ecosystem – Easy to Use



Supports industry standard software

- Standard Linux OS support and system architecture
 - Continue and expand OSS development activities for FUIITSU-MONAKA
 - OSS development achievements for Fugaku/A64FX: GCC, glibc, live-patch, papi, etc
 - Comply with standard system architecture (Arm System Ready) and support major distributions
- Arm software ecosystem
 - Working on the standard tools (Python/Java/LLVM) to provide higher performance on FUJITSU-MONAKA.
- Enabling smooth transition of customer assets and continuously enhancing performance

Power efficient CPU for datacenters

- Contribute to the realization of carbon-neutral society
- Targeted for wide range of usage in the data-center including AI and HPC
- Will be shipped in 2027

Comparison between A64FX and MONAKA

A64FX	FUJITSU-MONAKA
HBM2 (8GB) HBM2 (8GB)	DDRS DDRS
Armv8-A Architecture - SVE for HPC and AI	Armv9-A Architecture - SVE2 enhanced for HPC and AI - Confidential Computing
48 cores x 1 socket (48 cores per node)	144 cores x 2 sockets (288 cores per node)
Low voltage	Ultra low voltage
2.5D - CPU 7nm - HBM2	3D chiplet FUJITSU-M - Core die 2nm during SC23 - SRAM die/IO die 5nm
HBM2 4 channels	DDR5 12 channels
PCI Express 3.0 Tofu Interconnect	PCI Express 6.0 (CXL3.0)
Air cooling and Liquid cooling	Air cooling



Fujitsu's contributions to OSS Ecosystem and collaborations with oneAPI

• We need to build cross-industry connected ecosystems, and co-create innovations that deliver environmental and social value. • Fujitsu is committed to working with you on this journey, Enviror ment building a better future together. Research Companies institutes Environment and Well-Economy society **Open source** being Open source technology technology Govern Commu 8° Open source ments nities technology Customers mplovee **Regenerative society** Financia Systemic value challenges **Connected Ecosystem** Sustainability = Business 13 © 2023 Fujitsu Limited FUJITSU PUBLIC

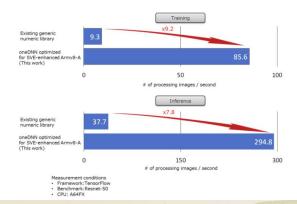
Our commitment to open-source community

Fujitsu's key contributions to OSS Community FUJITSU

A long history of collaborating with open-source communities, via open source development in mission-critical systems and in the supercomputer Fugaku

14

Fujitsu's key oneAPI contributions



SPEC OPEN SOURCE COMMUNITY NEWS EVENTS RESOURCES

Developer Story: How We Ported oneDNN to Fugaku with Arm

NOVEMBER 1, 2021

f in 🗹 🗠

SPEC OPEN SOURCE COMMUNITY

BACK TO BLOG

fank.

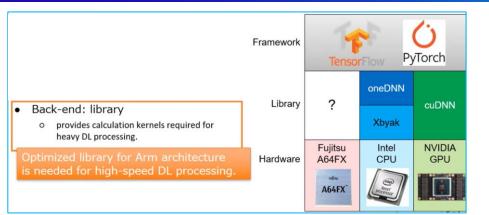
oneAPI

Fujitsu and RIKEN Optimized oneDNN for Improved Performance on ARM

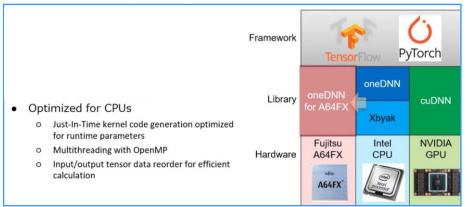
EVENTS

RESOURCES

NEWS


NOVEMBER 29, 2021


https://www.oneapi.io/blog/fujitsu-and-riken-optimized-onednn-for-improved-performance-on-arm/ https://www.oneapi.io/blog/developer-story-how-we-ported-onednn-to-fugaku/

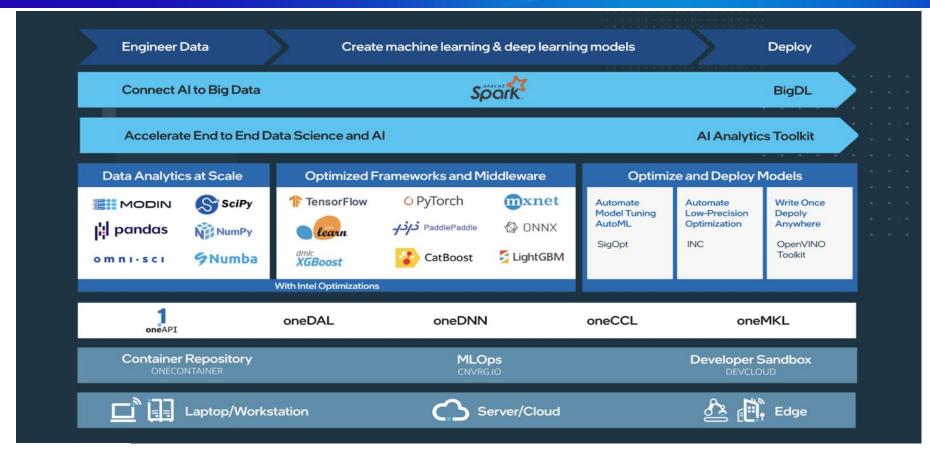


Software stack for Deep Learning processing in A64FX [Kawakami - LinaroConnect 21]

Motivation for porting oneDNN for A64FX

- oneDNN was ported through implementation at the instruction level
 - using Xybak JIT assembler for x86_64

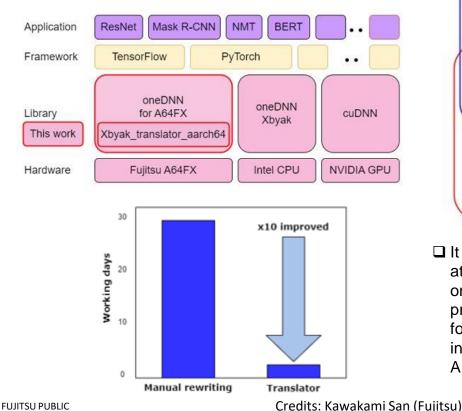
Ref: https://www.youtube.com/watch?v=6Xn7ldLL160

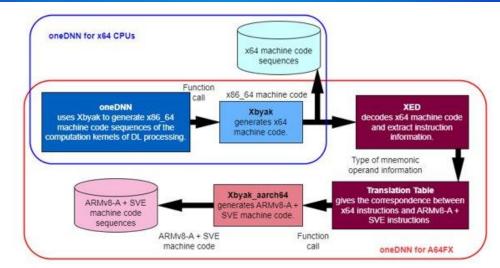

Credits: Kawakami San (Fujitsu)

16

FUITSU

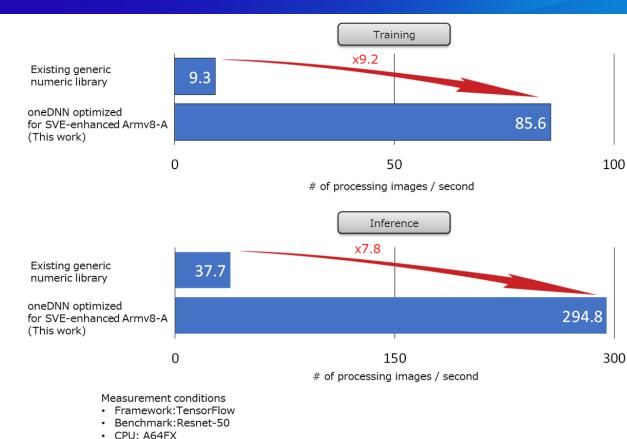
Leveraging oneAPI Ecosystem





Xbyak_aarch64: JIT Assembler for ARM and SVE

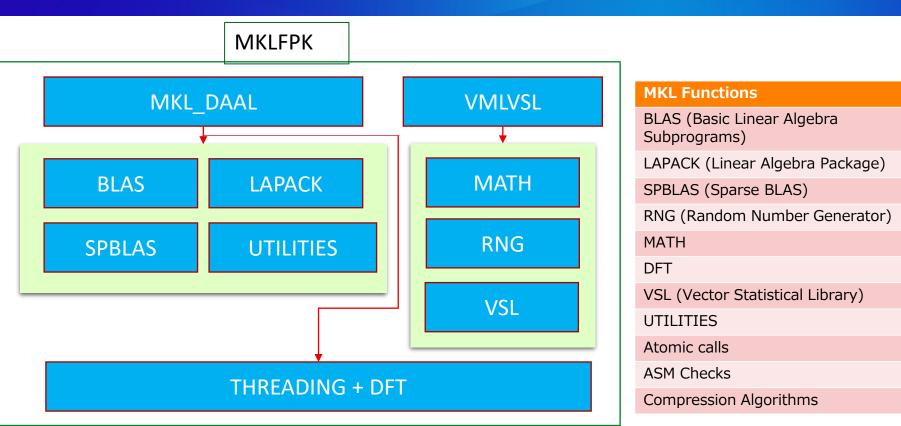
Role of oneDNN in DL SW stack with xbyak Translator



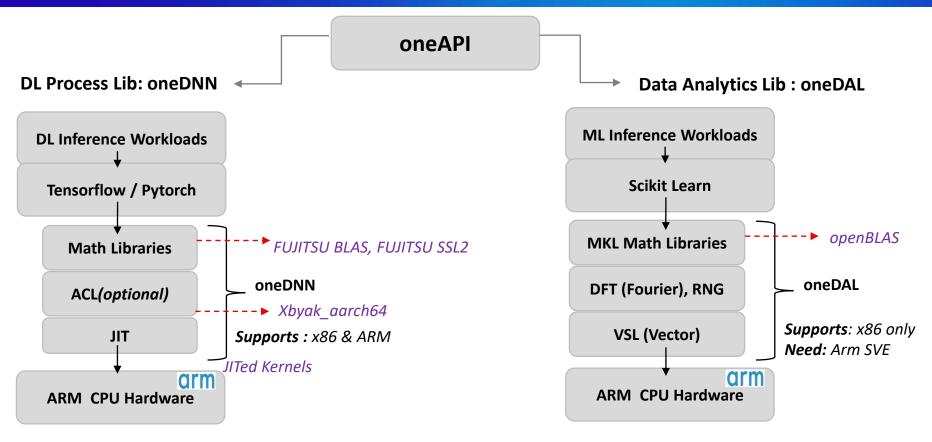
It is a binary translator that at runtime converts oneDNN dynamically produced executable codes for the x86_64 architecture into executable codes for Armv8-A instruction set.

HPC results on oneDNN using JIT assembler Xbyak_aarch64

Improved processing speed for CPU-based DL



- With two software in our hands, Xbyak_aarch64 and Xbyak_translator_aarch64, Fujitsu did the porting of oneDNN for Armv8-A instruction set.
- The chart here shows the measured processing speed of Resnet-50 when TensorFlow was used as a framework software.
- Our oneDNN optimized for Armv8-A allows for a significant speedup of 9.2 times in the training process and 7.8 times in the inference process
- Contributed to oneDNN open source project


FUJITSU PUBLIC

Credits: Kawakami San (Fujitsu)

oneAPI MKL for Optimized Math Functions

Leveraging oneAPI for ARM ecosystem

Fujitsu's partnership with Unified Accelerator (UXL) Foundation

Partnership with UXL Foundation

- Build a multi-architecture multi-vendor software ecosystem for all accelerators
- Unify the heterogeneous compute ecosystem around open standards
- Build on and expand open-source projects for accelerated computing

Steering Committee Members

UXL Foundation: Approach

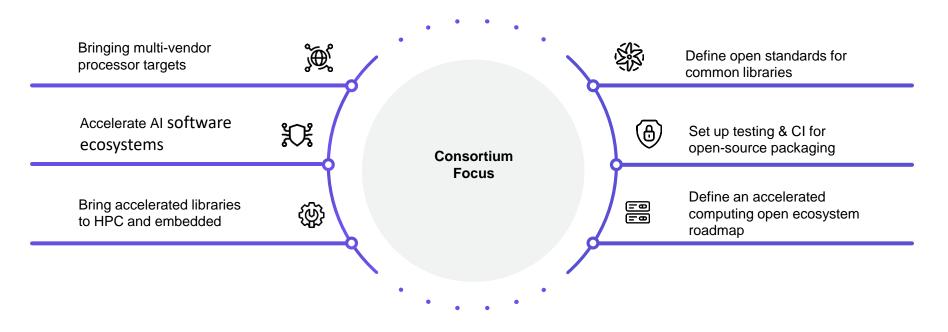
<u>у к</u> Я К

The founding companies are seeding the project with highly valuable contributions to open source libraries

Working Groups

Specification – defining an open standard for accelerated libraries

Open Source – delivering value to the community through collaboration


The group will work to drive the development of an open ecosystem for accelerated computing based on the fundamentals of open standards and open source.

Project governed by the Joint Development Foundation (JDF), a part of the Linux Foundation

UXL Foundation: Technical Goals

Open specifications, APIs, open source for AI and HPC, Edge Compute and Edge AI

Join us: www.UXLFoundation.org

Coexistence with Explosively Evolving Technologies

FUJITSU

Conclusion

- Fujitsu develops high performance and energy-efficient processor called FUJITSU-MONAKA using our own microarchitecture and innovative 3D many-core architecture
- We continue and expand software development with communities and our partners for easy-to-use
- This processor will meet future computing demand of performance, power, reliability and usability for wide range of usage in the data-center including AI and HPC
- We will contribute to the realization of carbon-neutral society by our computing technologies and collaboration with users and partners

Acknowledgement

This presentation is based on results obtained from a project, JPNP21029 subsidized by the

New energy and Industrial Technology Development Organization (NEDO)

Q&A

Thank you

© 2023 Fujitsu Limited