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Controlling TCO

MLM Fine tuning & optimisations with
oneAPl and 4th Gen Intel® Xeon

Sathish Kumar E V / EdgeVerve



Understanding the landscape
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Classification (1) — 200 ms (per document page)
Field Extraction (1) — 150 ms (per document page)
Table detection (1) — 150 ms

Checkbox detection (1) — 150 ms

Intent recognition (1) — 250 ms (100 sentences/page)
Entity recognition (5 entities) — 500ms (100

sentences/page
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Current state (without optimizations)

* Average 10 Al models per
document-page

* Per document-page around 1.4
seconds of Al inferencing

* A 20-page document takes 28 Sec
of Al Inferencing

« Abatch of 10000 documents (20
pages/doc) takes 78 Hrs of Al
inferencing




Objectlves

Background: Around 80% of Al program fail in production. One of the reasons —
unviability of the entire solution.

* Approach: Look at the entire DL solutions in two parts — training and
inferencing. Training happens intermittent while Inferencing happens
continuously.

 (Objective: Reduce TCO by

1. Reduce training cost — by optimizing on CPU than GPU
2. Reduce inferencing cost - by optimizing Inferencing stack

intel.



1. Optimize Training

intel.



Fine tuning MLM models

Base model: Roberta base

Fine tune for Financial Domain
Dataset: ~ 1.1 M sentences

® Training Set: 900384 (80%)

® Validation Set: 220872 (20%)

® CPU Cores: 224 (across 2 sockets)
® Memory:1TB

— is run on Intel Sapphire Rapids (SPR)

Batch Size | ETA Max memory Max CPU usage
usage

E 250 hours ~19.6 GB ~9000% (i.e., 90 CPUs)
_ ~160 hours Not captured Not captured

K 180 hours ~35 GB ~10-11K%
EE I - 440 hours ~250 GB ~10-11K%
EEE ~410 hours ~170 GB ~10-11K%

Based on the above experiments, we realized that despite of
sufficient resources (RAM and CPUs) available at disposal,
somehow the timings weren’t improving.
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Fine tuning - Run 2 with optimizations

Training optimizations: IPEX and bfloat16 with auto
mixed precision computations.

EFEB ~210 hours  ~96 GB ~10-11K%
~80 hours ~40 GB ~10-11K%
Observations:

50% reduction in training time. Memory
consumption significantly reduced.

Inference with optimizations: IPEX. Bfloat16 and
oneDNN.

Model  |No optimization With optimization
1.94 s 1.54 seconds
24.64 s 6.88 seconds
55.03 s 14.79 seconds
80.09 s 26.04 seconds

Observations:
3x improvement on larger batch size.




2. Optimize Inferencing

intel.



Model operations optimized with Intel
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Results for field extraction

CONFIG 1 CONFIG 1 (CLX) | CONFIG 2 (ICX) CONFIG 2 (ICX) Performance | Performance | Performance
Test case (CLX) Intel Python 3.8.5+ | Torch Serve 1.8 | Intel Python 3.8.5 + Gain Gain Gain
Torch Server Torch Server 1.8 Torch Server 1.8 (CLX) (ICX) (IPEX)
1.8 with IPEX 1.8 with IPEX 1.8
Model Dataset Batch size Avg Response  Avg Response time Avg Response Avg Response time  Native vs IPEX Native vs CLX vs ICX
time (ms) / 4K (ms)/ time (ms) / (ms)/ IPEX
requests (3 4K request (3 docs 4K request (3 4K request (3 docs
docs avg per avg per request) docs avg per avg per request)
request) request)
LayoutLM Internal Variable 527 285 429 217 1.85x 1.98x 1.31x
(1-5
documents/req)
Variable Batch Size (1-5 Docs/req) Variable Batch Size (1-5 Docs/req)
= Xeon 8280 - IPEX 1.8 = Xeon 8380 - IPEX 1.8 m Xeon 8380 - PyTorch 1.8 m Xeon 8380 - IPEX 1.8
25
(]
. 14 L8 8 1.98
e _12 1 g5 °
€3 1 S %
== £ 315
22038 S o
o206 38 1
e N
g£04 T205
02 S
ET 0 2 0
(@]
< Avg. Response Time Avg. Response Time




Results for table detection

CONFIG 1 CONFIG 1 (CLX) CONFIG 2 (ICX) CONFIG 2 (ICX) Performance | Performance | Performance
Test case (CLX) Intel Python 3.8.5+ | TF Serving2.5 | Intel Python 3.8.5 + Gain Gain Gain
TF Serving 2.5 TF 2.5 with TF 2.5 with (CLX) (ICX) (Intel Opt. TF
Optimization Optimization 2.5)
Model Dataset Batch size Avg Response  Avg Response time Avg Response Avg Response time  TF2 5 ys Intel TF2.5 vs CLX vs ICX
time (ms) / (ms)/ time (ms) / (ms)/ Opt. TF 2.5 Intel Opt. TF
4K request (3 4K request (3 docs 4K request (3 4K request (3 docs 25
docs avg per avg per request) docs avg per avg per request)
request) request)
Yolo Internal Variable 464 310 380 254 1.6x 1.56x 1.23x
(1-5
documents/req)
Variable Batch Size (1-5 Docs/req) Variable Batch Size (1-5 Docs/req)
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Key Takeaway

® General Purpose CPU’s gives us unique advantage to overcome High GPU Cost / Small
GPU memory capacity limits to scale out very efficiently & achieve acceptable DL/ML
throughput

® With Intel® Al Analytics toolkit optimized for Xeon that covers the full Al pipeline and data
science journey from data to training to inference, Many of these multi-fold performance

benefits are just 1 line of code change away

intel
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Thank you

oneAP| DevSummit for Al & HPC 2023, South Korea



