

Controlling TCO

MLM Fine tuning & optimisations with oneAPI and 4th Gen Intel[®] Xeon

Sathish Kumar E V / EdgeVerve

Understanding the landscape

Classification (1) - 200 ms (per document page) Field Extraction (1) - 150 ms (per document page) Table detection (1) - 150 ms Checkbox detection (1) - 150 ms Intent recognition (1) - 250 ms (100 sentences/page) Entity recognition (5 entities) - 500ms (100 sentences/page) 16 vCPU, 32 GB

Current state (without optimizations)

- Average 10 AI models per document-page
- Per document-page around 1.4 seconds of AI inferencing
- A 20-page document takes 28 Sec of AI Inferencing
- A batch of 10000 documents (20 pages/doc) takes 78 Hrs of Al inferencing

intel

Objectives

- Background: Around 80% of AI program fail in production. One of the reasons unviability of the entire solution.
- Approach: Look at the entire DL solutions in two parts training and inferencing. Training happens intermittent while Inferencing happens continuously.
- Objective: Reduce TCO by
 - 1. Reduce training cost by optimizing on CPU than GPU
 - 2. Reduce inferencing cost by optimizing Inferencing stack

1. Optimize Training

Fine tuning MLM models

- Base model: Roberta base
- Fine tune for Financial Domain
- Dataset: ~ 1.1 M sentences
- Training Set: 900384 (80%)
- Validation Set: 220872 (20%)
- CPU Cores: 224 (across 2 sockets)
- Memory: 1 TB

As – is run on Intel Sapphire Rapids (SPR)

Batch Size	ETA	Max memory	Max CPU usage
		usage	
4	~250 hours	~19.6 GB	~9000% (i.e., 90 CPUs)
8	~160 hours	Not captured	Not captured
16	~180 hours	~35 GB	~10-11K%
256	~ 440 hours	~250 GB	~10-11K%
128	~410 hours	~170 GB	~10-11K%

Based on the above experiments, we realized that despite of sufficient resources (RAM and CPUs) available at disposal, somehow the timings weren't improving.

Fine tuning – Run 2 with optimizations

Training optimizations: IPEX and bfloat16 with auto mixed precision computations.

Batch Size	ETA	Max Mem usage	Max CPU usage
128	~210 hours	~96 GB	~10-11K%
32	~80 hours	~40 GB	~10-11K%

Observations: 50% reduction in training time. Memory consumption significantly reduced. Inference with optimizations: IPEX. Bfloat16 and oneDNN.

Model	No optimization	With optimization
Time(Batch Size 1)	1.94 s	1.54 seconds
Time(Batch Size 32)	24.64 s	6.88 seconds
TIME Batch Size 64	55.03 s	14.79 seconds
TIME Batch Size 96	80.09 s	26.04 seconds

Observations: 3x improvement on larger batch size.

2. Optimize Inferencing

Model operations optimized with Intel

Architecture for serving AI models

Results for field extraction

intel

Results for table detection

Key Takeaway

- General Purpose CPU's gives us unique advantage to overcome High GPU Cost / Small GPU memory capacity limits to scale out very efficiently & achieve acceptable DL/ML throughput
- With Intel® AI Analytics toolkit optimized for Xeon that covers the full AI pipeline and data science journey from data to training to inference, Many of these multi-fold performance benefits are just 1 line of code change away

Thank you

oneAPI DevSummit for AI & HPC 2023, South Korea