
Controlling TCO
MLM Fine tuning & optimisations with

oneAPI and 4th Gen Intel® Xeon

Sathish Kumar E V / EdgeVerve

Understanding the landscape

Current state (without optimizations)
• Average 10 AI models per

document-page
• Per document-page around 1.4

seconds of AI inferencing
• A 20-page document takes 28 Sec

of AI Inferencing
• A batch of 10000 documents (20

pages/doc) takes 78 Hrs of AI
inferencing

Classification (1) – 200 ms (per document page)
Field Extraction (1) – 150 ms (per document page)
Table detection (1) – 150 ms
Checkbox detection (1) – 150 ms
Intent recognition (1) – 250 ms (100 sentences/page)
Entity recognition (5 entities) – 500ms (100
sentences/page)
16 vCPU, 32 GB

Objectives
• Background: Around 80% of AI program fail in production. One of the reasons –

unviability of the entire solution.

• Approach: Look at the entire DL solutions in two parts – training and
inferencing. Training happens intermittent while Inferencing happens
continuously.

• Objective: Reduce TCO by
1. Reduce training cost – by optimizing on CPU than GPU
2. Reduce inferencing cost - by optimizing Inferencing stack

1. Optimize Training

Fine tuning MLM models
• Base model: Roberta base

• Fine tune for Financial Domain

• Dataset: ~ 1.1 M sentences

• Training Set: 900384 (80%)

• Validation Set: 220872 (20%)

• CPU Cores: 224 (across 2 sockets)

• Memory: 1 TB

Batch Size ETA Max memory
usage

Max CPU usage

4 ~250 hours ~19.6 GB ~9000% (i.e., 90 CPUs)
8 ~160 hours Not captured Not captured
16 ~180 hours ~35 GB ~10-11K%
256 ~ 440 hours ~250 GB ~10-11K%
128 ~410 hours ~170 GB ~10-11K%

As – is run on Intel Sapphire Rapids (SPR)

Based on the above experiments, we realized that despite of
sufficient resources (RAM and CPUs) available at disposal,
somehow the timings weren’t improving.

Fine tuning – Run 2 with optimizations
Training optimizations: IPEX and bfloat16 with auto
mixed precision computations.

Batch Size ETA Max Mem usage Max CPU usage

128 ~210 hours ~96 GB ~10-11K%
32 ~80 hours ~40 GB ~10-11K%

Observations:
50% reduction in training time. Memory
consumption significantly reduced.

Model No optimization With optimization
Time(Batch Size 1) 1.94 s 1.54 seconds
Time(Batch Size 32) 24.64 s 6.88 seconds
TIME Batch Size 64 55.03 s 14.79 seconds
TIME Batch Size 96 80.09 s 26.04 seconds

Inference with optimizations: IPEX. Bfloat16 and
oneDNN.

Observations:
3x improvement on larger batch size.

2. Optimize Inferencing

Model operations optimized with Intel
XtractEdge ServicesXtractEdge Services

XtractEdge model operationsXtractEdge model operations

Architecture for serving AI models

Results for field extraction
Test case

CONFIG 1
(CLX)

Torch Server
1.8

CONFIG 1 (CLX)
Intel Python 3.8.5 +

Torch Server 1.8
with IPEX 1.8

CONFIG 2 (ICX)
Torch Serve 1.8

CONFIG 2 (ICX)
Intel Python 3.8.5 +

Torch Server 1.8
with IPEX 1.8

Performance
Gain
(CLX)

Performance
Gain
(ICX)

Performance
Gain

(IPEX)

Model Dataset Batch size Avg Response
time (ms) / 4K

requests (3
docs avg per

request)

Avg Response time
(ms) /

4K request (3 docs
avg per request)

Avg Response
time (ms) /

4K request (3
docs avg per

request)

Avg Response time
(ms) /

4K request (3 docs
avg per request)

Native vs IPEX Native vs
IPEX

CLX vs ICX

LayoutLM Internal Variable
(1-5

documents/req)

527 285 429 217 1.85x 1.98x 1.31x

1

1.31

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Avg. Response TimeN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (h
ig

he
r i

s
be

tte
r)

Variable Batch Size (1-5 Docs/req)

Xeon 8280 - IPEX 1.8 Xeon 8380 - IPEX 1.8

1

1.98

0

0.5

1

1.5

2

2.5

Avg. Response Time

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (h
ig

he
r i

s
be

tte
r)

Variable Batch Size (1-5 Docs/req)

Xeon 8380 - PyTorch 1.8 Xeon 8380 - IPEX 1.8

Results for table detection
Test case

CONFIG 1
(CLX)

TF Serving 2.5

CONFIG 1 (CLX)
Intel Python 3.8.5 +

TF 2.5 with
Optimization

CONFIG 2 (ICX)
TF Serving 2.5

CONFIG 2 (ICX)
Intel Python 3.8.5 +

TF 2.5 with
Optimization

Performance
Gain
(CLX)

Performance
Gain
(ICX)

Performance
Gain

(Intel Opt. TF
2.5)

Model Dataset Batch size Avg Response
time (ms) /

4K request (3
docs avg per

request)

Avg Response time
(ms) /

4K request (3 docs
avg per request)

Avg Response
time (ms) /

4K request (3
docs avg per

request)

Avg Response time
(ms) /

4K request (3 docs
avg per request)

TF2.5 vs Intel
Opt. TF 2.5

TF2.5 vs
Intel Opt. TF

2.5

CLX vs ICX

Yolo Internal Variable
(1-5

documents/req)

464 310 380 254 1.6x 1.56x 1.23x

1
1.23

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Avg. Response TimeN
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (h
ig

he
r i

s
be

tte
r)

Variable Batch Size (1-5 Docs/req)

Xeon 8280 - Intel Opt. TF 2.5 Xeon 8380 - Intel Opt. TF 2.5

1

1.56

0

0.5

1

1.5

2

Avg. Response Time

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (h
ig

he
r i

s
be

tte
r)

Variable Batch Size (1-5 Docs/req)

Xeon 8380 - TF 2.5 Xeon 8380 - Intel Opt. TF 2.5

Key Takeaway
• General Purpose CPU’s gives us unique advantage to overcome High GPU Cost / Small

GPU memory capacity limits to scale out very efficiently & achieve acceptable DL/ML
throughput

• With Intel® AI Analytics toolkit optimized for Xeon that covers the full AI pipeline and data
science journey from data to training to inference, Many of these multi-fold performance
benefits are just 1 line of code change away

Thank you

oneAPI DevSummit for AI & HPC 2023, South Korea

