

- Introduction
- oneAPI and oneDNN
- Workflow
- Use of oneDNN and TensorFlow in project
- Future Enhancements
- Conclusion

INTRODUCTION

- •Global waste management is a critical issue with billions of tons of municipal solid waste generated annually.
- •A significant portion of this waste is not properly managed, leading to environmental consequences.
- •Traditional manual sorting methods for garbage segregation are time-consuming and inefficient.
- •AI/ML algorithms offer a solution by automating the garbage segregation process.
- •In this project, we propose a system that utilizes AI/ML algorithms and oneApi for smart garbage classification.

oneAPI and oneDNN

- •oneAPI is a unified programming model that supports heterogeneous computing systems, allowing code to run on different hardware architectures like CPUs, GPUs, and FPGAs.
- •Benefits of oneAPI include code portability, ease of programming, and performance optimizations.
- •oneDNN is a software library that provides optimized routines for deep learning operations and is compatible with different hardware architectures.

Workflow

Importing Libraires

Data Importing

Preparing the Data

Generator for Training/ Testing

Model Creation /Compilation

Training/Testing the Model

Saving model

Deploying the Model

Use of oneDNN and TensorFlow in project of

- os.environ['TF_ENABLE_ONEDNN_OPTS'] = '1' enables Intel's oneAPI Deep Neural Network Library (oneDNN)
 optimizations in TensorFlow.
- oneDNN provides highly optimized routines for deep learning operations like convolution, pooling, normalization, and activation functions.
- Using oneDNN can result in faster execution times and better performance on CPUs, particularly those with Intel processors.
- The code snippet enables one DNN optimizations for TensorFlow on the current system.
- The model created using tensorflow.keras is a convolutional neural network (CNN) for image classification.
- The architecture includes convolutional blocks, max pooling layers, and fully connected layers with dropout for regularization.
- The model is compiled using the Adam optimizer, sparse categorical cross-entropy loss function, and accuracy metric for evaluation.

Future Enhancements

Expansion of the Dataset: Continuously expanding and diversifying the dataset of waste material images will improve the model's ability to classify a wider range of garbage types accurately.

Multi-modal Classification:

Combining image analysis with other data modalities, such as text or audio, can enhance the classification accuracy

Real-time Object Detection: Real-time identification and segregation of waste materials, improving the overall efficiency of the recycling process.

Awareness: Promoting education and awareness about the importance of waste management, recycling.

Conclusion

In conclusion, here are the key points regarding the use of oneDNN in smart garbage classification:

- •AI/ML algorithms and oneDNN play a crucial role in automating the process of garbage segregation.
- •Smart garbage classification using machine learning enables more efficient and accurate waste material classification.
- This approach has significant implications for improving recycling processes and promoting a more sustainable future.

