
Wednesday, December 7, 2022

oneAPI HPC Developer Summit 2022

High-Performance Neuromorphic 
Sensor Processing

Dr. Alan George
Mickle Chair Professor of ECE

University of Pittsburgh

Dr. Ryad Benosman
Professor of ECE and Ophthalmology

University of Pittsburgh

Luke Kljucaric
PhD Candidate

University of Pittsburgh



DevSummit-22

Overview
§ What is SHREC?
§ Background

§ HLS Technologies
§ Neuromorphic Technologies

§ Motivations
§ Approach
§ Results

§ Performance
§ Resource Usage

§ Conclusions
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What is SHREC?
§ NSF Center for Space, High-Performance, & Resilient Computing

§ Founded in Sep. 2017, replacing highly successful NSF CHREC Center
§ Leading ECE research groups @ four major universities
• University of Pittsburgh (lead)
• Brigham Young University (partner)
• University of Florida (partner)
• Virginia Tech (partner)

§ Under auspices of IUCRC Program at NSF
§ Industry-University Cooperative Research Centers
• Fostering university, agency, and industry R&D collaborations

§ SHREC is both National Research Center and Consortium
• University groups serve as research base (faculty, students, staff)
• Industry & government organizations are research partners, sponsors, 

collaborators, advisory board, & technology-transfer recipients
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Center Mission Theme: Mission-Critical Computing

Basic and applied R&D to advance S&T 
on advanced computing.  

Many common challenges, 
technologies, & benefits, in terms of 

performance, power, adaptivity, 
productivity, cost, size, etc.  

From architectures to applications 
to design concepts and tools.

From spacecraft to supercomputers!

SHREC

Space
Computing

High-Performance 
Computing

Resilient 
Computing
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Research Interaction  

Basic Research Applied R&D

Universities Industry & 
Government

Center

NSF Model for IUCRC Centers
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CY22 Center Members
Each member 

funds 1 or more 
memberships

* = New Members for 2022

1. AFRL Space Vehicles Directorate
2. Army Research Laboratory
3. Astrobotic
4. BAE Systems
5. Ball Aerospace
6. Blue Origin
7. Dell EMC
8. Intel *
9. Fermilab
10. Genesis Engineering Solutions
11. GSI Technology
12. Honeywell
13. JHUAPL *
14. JPL
15. L3Harris 
16. Laboratory for Physical Sciences

17. Lockheed Martin
18. Microchip *
19. MIT Lincoln Laboratory
20. MITRE
21. NASA Ames Research Center
22. NASA Goddard Space Flight Center
23. NASA IV&V Facility
24. NASA Johnson Space Center
25. National Security Agency
26. Naval Research Laboratory
27. Northrop Grumman *
28. Raytheon
29. Renaissance Associates
30. Satlantis
31. Space Micro
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oneAPI For FPGAs
§ Single-Source Programming Model

§ Host – CPU based, (Data-Parallel) SYCL
• Configures buffers (data transferred to/from FPGA)
• Abstracts DMA/memory subsystems
• Kernel (accelerator) code expressed inline 
• Unified shared memory 
• Large set of library APIs to efficiently leverage accelerator devices
• Can perform work concurrently (inherent heterogeneous design)

§ Accelerator – SYCL
• DPC++ – C++ and SYCL
• Single-source programming model 
• High-level abstraction for large productivity gains over RTL
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Neuromorphic Technology
§ Asynchronous event-based vision sensors

§ Mimic human-eye functionality
• Records individual changes in relative pixel luminance

§ Data sent as stream of events
• Does not capture frames like conventional camera sensors

§ Events captured at 1 µs resolution
• State of every pixel is known at each event
• Small number of events in real-world apps
• 1M FPS effective frame rate
• Efficient data rate
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Neuromorphic Technology
§ Neuromorphic Architectures

§ Mimic human-brain functionality
• Operates on spikes with many interconnected neurons
• Temporal- and rate-encoding provides more information

§ Well suited for apps using neuromorphic sensors
• Event-based data carries “spikes” with time  

§ Intel Labs Loihi Architecture 
§ Algorithms

§ How do we classify objects?
§ Reconstruct frames over time?
• Use CNNs?
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Event Clustering
§ k-means Clustering 

§ Events often manifest as clusters
• Common clusters can be recognized as features
• Potential issues with similar features in different locations
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HOTS
§ A Hierarchy Of event-based Time Surfaces

§ Relates spatial and temporal information
• Extracts object features for classification 
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T1) Overview
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Goals
• Create low-latency, scalable FPGA 
designs for neuromorphic algorithms

• Explore benefits of multiple algorithms 
for neuromorphic feature extraction

Challenges
• Neuromorphic sensors require sub-
microsecond processing latency

• Tradeoffs between compact designs for 
scalability and parallel performance

Optimize
• Optimize FPGA designs
with oneAPI

• Reduce resource usage 
and leverage emerging 
FPGA technology 

Scale
• Scale FPGA designs for 
efficient resource usage

• Analyze performance vs. 
accuracy scaling across 
both algorithms

Investigate
• Investigate tradeoffs of 
accelerating SYCL with 
FPGAs and CPUs

• Evaluate novel event-
based datasets for robust 
algorithm testing

SYCL: Data Parallel C++
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Approach
§ Datasets

§ N-MNIST – Neuromorphic 1-to-1 MNIST
§ N-Traffic – Custom traffic-based dataset 
• Created with dynamic vision sensor for real-world data 

§ Classifiers
§ Histogram – How close features match class signature
§ Multi-layer perceptron – higher accuracy

§ FPGA specifics 
§ Events-per-stream (EPS)
• Larger yields increased accuracy, smaller yields lower latency
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k-means FPGA Design
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FPGA

FPGA resources required

Fabric RAM event stream

Compute distance from each cluster center
BRAM

histogram

standard ops unrolled loop pipelined loop

Cluster Centers
(x, y)

Comparator Tree for Closest Center
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HOTS FPGA Design
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FPGA
Fabric RAM

save search
exp classify

save search
exp classify

save search
exp classify

BRAM

BRAM

BRAM
recent events

FPGA resources required
standard ops
unrolled loop

pipelined loop newer older

layer 1

layer 2

layer 3

recent events

recent events

event stream
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Performance Scaling (1/2)
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Performance Scaling (2/2)
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Accuracy Scaling
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Discussion
§ Performance

§ Realtime processing with k-means
• Less complexity, smaller pipeline
• HOTS exponential calculation ~ critical path

§ Large feature clustering with HOTS
• 2D x and y points with k-means
• 3-stage clustering in HOTS with 25-, 81-, and 289-point features
• HOTS clusters are too large for fabric memory (costly stalls)
• Could be alleviated with HBM2 devices

§ Better scalability with k-means
• Large feature points require more resources, deeper pipeline
• <5% resource with k-means can process multiple sensor inputs
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Discussion
§ Accuracy

§ K-means accuracy is better at lower EPS
• Depth of HOTS requires more information

§ As number of events increase, HOTS accuracy improves
• Does not support improvement to justify performance loss

§ Features in different spatial locations 
• Should present a problem in k-means
• Accuracy remains high through 60K samples tested

§ Problem with current state-of-the-art datasets?
• Not enough spatial information?
• IBM Gesture dataset 
• Custom frequency-based dataset

20
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Conclusions
§ Lower-latency performance with k-means

§ ~74× faster than HOTS with slightly less accuracy
§ More compact designs with k-means

§ 23.8× less resources used versus HOTS
§ Large-vector clustering degrades performance

§ More-complex logic, more resources, longer latency, 
lower clock frequency – due to more memory accesses

§ k-means enables real-time               
neuromorphic event processing
§ Stratix designs use <5% of all available FPGA 

resources, making designs highly scalable
21
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Future Work
§ New dataset exploration

§ IBM Gesture dataset
§ Custom dataset – Pendulum frequency classifier
§ Validate spatial and temporal relationships

§ HOTS optimizations
§ Discretization of exponential calculation
• SYCL implementation is efficient

§ Boost Trees over clustering?
§ New FPGA Technology

§ Explore the use of on-chip HBM2 memory 
• Less memory penalties for clustering
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Questions?
§ Thanks for your attention!

24
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