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Overview
= What is SHREC?
= Background ““‘é
= HLS Technologies oneAPI

= Neuromorphic Technologies

= Motivations (inter) FPGA

= Approach

= Results
= Performance
= Resource Usage

= Conclusions
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What is SHREC?

= NSF Center for Space, High-Performance, & Resilient Computing

= Founded in Sep. 2017, replacing highly successful NSF CHREC Center
= Leading ECE research groups @ four major universities AL
* University of Pittsburgh (lead)
* Brigham Young University (partner)
* University of Florida (partner)
* Virginia Tech (partner)
= Under auspices of IUCRC Program at NSF

* Industry-University Cooperative Research Centers
* Fostering university, agency, and industry R&D collaborations
= SHREC is both National Research Center and Consortium

* University groups serve as research base (faculty, students, staff)

* Industry & government organizations are research partners, sponsors,
collaborators, advisory board, & technology-transfer recipients
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Theme: Mission-Critical Computing

Basic and applied R&D to advance S&T
on advanced computing.

Many common challenges,
technologies, & benefits, in terms of
performance, power, adaptivity,
productivity, cost, size, etc.

From architectures to applications
to design concepts and tools.

From spacecraft to supercomputers!

Resilient
Computing
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NSF Model for IUCRC Centers

Research Interaction

Basic Research Applied R&D
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CY22 Center Members

AFRL Space Vehicles Directorate
Army Research Laboratory
Astrobotic

BAE Systems

Ball Aerospace

Blue Origin

Dell EMC

Intel *

9. Fermilab

10. Genesis Engineering Solutions
11. GSI Technology

12. Honeywell

13. JHUAPL *

14. JPL

15. L3Harris

16. Laboratory for Physical Sciences
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* = New Members for 2022

Each member

funds 1 or more
memberships

17. Lockheed Martin

18. Microchip *

19. MIT Lincoln Laboratory

20. MITRE

21. NASA Ames Research Center
22. NASA Goddard Space Flight Center
23. NASA IV&V Facility

24. NASA Johnson Space Center
25. National Security Agency

26. Naval Research Laboratory
27. Northrop Grumman *

28. Raytheon

29. Renaissance Associates

30. Satlantis DLERN,
31. Space Mi GaBER
. Space Micro R

¥ University of BYU
Plttsburgh BRIGHAM YOUNG

‘ vzm UF
FLORIDA



DevSummit-22

oneAPI For FPGAs

= Single-Source Programming Model

= Host — CPU based, (Data-Parallel) SYCL X1
- Configures buffers (data transferred to/from FPGA) =
* Abstracts DMA/memory subsystems oneAPI

» Kernel (accelerator) code expressed inline

* Unified shared memory

 Large set of library APls to efficiently leverage accelerator devices
» Can perform work concurrently (inherent heterogeneous design)

= Accelerator — SYCL

. DPC++ — C++ and SYCL (SYCLM

» Single-source programming model
* High-level abstraction for large productivity gains over RTL
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Neuromorphic Technology

= Asynchronous event-based vision sensors

= Mimic human-eye functionality
* Records individual changes in relative pixel luminance

= Data sent as stream of events
* Does not capture frames like conventional camera sensors

= Events captured at 1 pus resolution
- State of every pixel is known at each event
« Small number of events in real-world apps
* 1M FPS effective frame rate
- Efficient data rate

PROPHESEE
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Neuromorphic Technology

= Neuromorphic Architectures

= Mimic human-brain functionality
* Operates on spikes with many interconnected neurons
* Temporal- and rate-encoding provides more information

= Well suited for apps using neuromorphic sensors
* Event-based data carries “spikes” with time

= |ntel Labs Loihi Architecture

= Algorithms
= How do we classify objects? -
= Reconstruct frames over time? |nte|

> Use CNNs? labs
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Event Clustering

= k-means Clustering

= Events often manifest as clusters
« Common clusters can be recognized as features
* Potential issues with similar features in different locations

Feature Extractor Classifier
A
[ |
/ﬁ /—\
k-means mLP
clustering

Neuromorphic Event
Sensor

/
Incoming event Collect n
! mber of
! Cluster cent event:

Neuromorphic Event
Stream

Signature

| SO0

Histogram
/ Classification (e.g. bicycle)
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HOTS

= A Hierarchy Of event-based Time Surfaces

= Relates spatial and temporal information
» Extracts object features for classification

Feature Extractor Classifier
[ |
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T1) Overview

Goals

 Create low-latency, scalable FPGA
designs for neuromorphic algorithms

 Explore benefits of multiple algorithms
for neuromorphic feature extraction

Optimize

Investigate

DevSummit-22

Challenges

* Neuromorphic sensors require sub-
microsecond processing latency

* Tradeoffs between compact designs for
scalability and parallel performance

Scale

» Optimize FPGA designs
with oneAPI

* Reduce resource usage
and leverage emerging
FPGA technology

Mission-Critical Computing

NSF CENTER FOR SPACE, HIGH-PERFORMANCE,
AND RESILIENT COMPUTING (SHREC)
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* Investigate tradeoffs of
accelerating SYCL with
FPGAs and CPUs

* Evaluate novel event-
based datasets for robust
algorithm testing

» Scale FPGA designs for

efficient resource usage
AAnAn

»

* Analyze performance vs.
accuracy scaling across
both algorithms
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Approach

= Datasets s |

= N-MNIST — Neuromorphic 1-to-1 MNIST

= N-Traffic — Custom traffic-based dataset
* Created with dynamic vision sensor for real-world data

= Classifiers
= Histogram — How close features match class signature
= Multi-layer perceptron — higher accuracy

= FPGA specifics

= Events-per-stream (EPS)
* Larger yields increased accuracy, smaller yields lower latency
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k-means FPGA Design

FPGA

event stream

BRAM
Cluster Centers Com

Comparator Tree for Closest Center |

histogram

Dstandard ops |:| unrolled loop |:| pipelined loop ¢ FPGA resources required
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HOTS FPGA Design

FPGA
Fabric

RAM event stream

layer 1

BRAM
recent events

layer 2

BRAM
recent events

[T 11
layer 3

BRAM search
recent events

[ [T

histogram

-—-—-*HE B

[Istandard ops [] pipelined loop newer I [ ] older

[Clunrolled loop I FPGA resources required
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Performance Scaling (1/2)

Algorithm Processing Latency Scaled Across

Events Per Stream 36.21
40.0 \
32.11 32.69 33.49 s
350 3182 : — —
o— ——

w
o
o

Events build up as
memory access
causes pipeline stalls

N
ok
o

HOTS: 222 MHz
k-means: 376 MHz

Event-Streaming Latency (us)
S
o

15.0 Real-time
Performance
10.0 Target = 1.00
0.63

50 0.57 0.56 0.54 0.52 l 0.49

0_‘0““"0 """"" —_— e e — "
50 100 200 400 800 1600
Events Per Stream o
Lower latency k-means pipeline fills

preferred —o—HOTS —e—k-means and overcomes initial

overhead
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Performance Scaling (2/2)

% of FPGA-Board Resources Used
S o S & 8 & & &

(&)}

FPGA-board Resource Usage Across Algorithms

41
40 FPGA designs are not

dependent on number
of events

Complex logic
(exponential) and large
vector comparisons

Smaller HOTS
layers residing in

on-chip memory

23
14
2 2 0
|
FF

LUT BRAM MLAB DSP

[ Lower Values

} /\ mHOTS mk-means

preferred

( Simple logic and

Mission-Critical Computing

small vectors require
L little resources J
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Accuracy Scaling

Algorithm Accuracy Scaled Across

Events Per Stream 97.2
100 57 89,5 95.7

90 80.5 85.2 =

70
60
50
40

—0
-0

35.1

Accuracy (%)

More events gives
30 more information —
dependent on when

20 events arrive
10
0
50 100 200 400 800 1600
Events Per Stream
[ Higher Values } ——HOTS —e—k-means
preferred
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Discussion

= Performance

= Realtime processing with k-means
* Less complexity, smaller pipeline
« HOTS exponential calculation ~ critical path

= Large feature clustering with HOTS
* 2D x and y points with k-means
 3-stage clustering in HOTS with 25-, 81-, and 289-point features
* HOTS clusters are too large for fabric memory (costly stalls)
e Could be alleviated with HBM2 devices
= Better scalability with k-means
* Large feature points require more resources, deeper pipeline
* <5% resource with k-means can process multiple sensor inputs
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Discussion

= Accuracy

= K-means accuracy is better at lower EPS
* Depth of HOTS requires more information

= As number of events increase, HOTS accuracy improves
* Does not support improvement to justify performance loss

= Features in different spatial locations
» Should present a problem in k-means
* Accuracy remains high through 60K samples tested

= Problem with current state-of-the-art datasets?
* Not enough spatial information?
* IBM Gesture dataset
* Custom frequency-based dataset
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Conclusions

= [ ower-latency performance with k-means
= ~74x faster than HOTS with slightly less accuracy

= More compact designs with k-means
= 23.8% less resources used versus HOTS

= | arge-vector clustering degrades performance

= More-complex logic, more resources, longer latency,
lower clock frequency — due to more memory accesses

= k-means enables real-time
neuromorphic event processing

= Stratix designs use <5% of all available FPGA }-
resources, making designs highly scalable

) University of BYU
@ P]ttsburgh BRIGHAM YOUNG
NSF CENTER FOR SPACE, HIGH-PERFORMANCE, 21 QW
AND RESILIENT COMPUTING (SHREC)

UNIVERSITY of




DevSummit-22

Future Work

= New dataset exploration
* |BM Gesture dataset
= Custom dataset — Pendulum frequency classifier
= Validate spatial and temporal relationships

= HOTS optimizations

= Discretization of exponential calculation
* SYCL implementation is efficient

= Boost Trees over clustering?

= New FPGA Technology

= Explore the use of on-chip HBM2 memory
* Less memory penalties for clustering
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Questions?

= Thanks for your attention!
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