N Pazmany Péter Catholic UnlverS|ty
\ Faculty of Information Technology an

Intel CPUs and GPUs on
structured-mesh stencil workloads
with oneAPI

Istvan Reguly (PPCU ITK), Mark Lubin (Intel), Xiao Zhu (Intel)




Structured-mesh stencil codes

11D-3D or more) applications i zes s il
* I,],k cartesian indexing, implicit connectivity | + A[i][3-11

« Trivial” parallelization: | + A[L][J+1]

. + A[i-1][3]

| |

* no loop carried dependencies + A[i+1][5]);
e possible reductons = —mem e e s s s s s =
* No implicit solvers (e.g. Gauss-Seidel)

* Oxford Parallel library for Structured meshes (OPS) —a DSL in C++

void poisson_kernel stencil(ACC<double> &A, ACC<double> &Anew) {
Anew(0,0) = 0.25f * ( A(1,0) + A(-1,0) + A(9,-1) + A(0,1));}

ops_par_loop(poisson_kernel stencil, "poisson kernel stencil", blocks[i+ngrid x*j], 2, iter_range,
ops_arg dat(u[i+ngrid x*j], 1, S2D 00 P16 M10 oP1 oM1l, "double", OPS_READ),
ops_arg dat(u2[i+ngrid x*j], 1, S2D 00, "double", OPS WRITE));



Look of a stencil loop - flat

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
cgh.parallel for<class apply stencil>(
cl::sycl::range<2>(jmax, imax),
[=](cl::sycl::item<2> idx) {
...//Views, bounds checking

“Flat” parallel loop: just specify how many work items
per dimension are required

Anew(0,0) = 0.25f * Expressed from viewpoint
( A(1,0) + A(-1,0) of “current” gridpoint,
+ A(0,-1) + A(0,1)); with relative offsets

« Simplest way to do things — does not prescribe anything about how
work items should be grouped or mapped to hardware



Look of a stencil loop — nd_range

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
cgh.parallel for<class apply stencil>(
cl::sycl::nd_range<2>(
cl::sycl::range<2>(jmax, imax),
cl::sycl::range<2>(4, 32)),

“nd_range” parallel loop: just specify how many work items
per dimension and split them into workgroups

[=](cl::sycl::nd_item<2> idx) { i
...//Views, bounds checking i H I
Anew(0,0) = 0.25f * Expressed from viewpoint =
( A(1,0) + A(-1,0) of “current” gridpoint, T il
+ A(9,-1) + A(0,1)); with relative offsets

* Explicit way of grouping work items and mapping them to hardware —
can control/impact cache locality. But entirely up to the programmer!

* Could automate?




Test setup

* Intel(r) Xeon(r) Platinum 8360Y
« 36 cores @ 2.4 GHz (HyperThreading
« BabelStream: 153 GB/s

° IRIS Xe MAX GPU SYCL source code
- 96 EU @ 1650 MHz
« BabelStream: 60.2 GB/s

High-level OPS code

¢ Xe-HP SDV GPU Clang/LLVM-based dpcpp compiler (oneAP| 22.1.2)
 Scaling:

* Intel(R) Xeon(R) Gold 6248

» 20 cores @ 2.5 GHz Cplééi‘:;fw IRIS Xe GPU Saiite

 BabelStream: 46 GB/s



Test applications

* CloverLeaf — 3D hydrodynamics (Mantevo suite) — 25673
 Eulerian-Lagrangian
» Low-order stencils, bandwidth bound
« 50+ kernels — many on the boundary only

* RTM - 3D Acoustic wave propagation — 32073
* Forward part of a seismic imaging application
» 8th order stencil
6 variables per point — AoS vs. SOA

* OpenSBLI — 3D Navier-Stokes solver

» Store All (SA) version — 80 loops, some 8th order stencils, mostly low-order,
bandwidth bound — 2403

« Stone None (SN) version — 18 loops, highly complex 4th order stencils, latency
bound — 42073



Loop formulation: nd_range or flat

e e -On GPUs, nd_range is
almost always better

 RTM app workgroup size
tuning:

b
00

o

5 B
_range is faster

m ;E * Default: 32x4x2
S 1 - Iris XE: +2.8%
8 » Xeon 8360Y: +11.7%
£ ke » Xeon 8360Y: RTM flat
. 1.64x faster than
o nd_range
0 e o B *no size WG found that
matches

MRTM MSNsp MSNdp WSAsp MSAdp




Performance highlights

SP vs. DP

« Switching from single to double
precision

 2x the FLOP instructions (higher
latency too)

e 2X the data movement

* OpenSBLI SN version mainly
latency bound

* OpenSBLI SA version more
bandwidth bound: closer to 2x

Slowdown DP/SP
= = = e
[#)] 00 (] N

o
=

o
[N

ot
(=)

Xeon 8360Y

BMSN MSA



AoS vs. SoAon RTM

AoS vs. SoA dats structures

18 L \75*

1674
¥ B\

1233

concs

10

Runtime (se
o

r

no_range IreXE fiat Xeon 83807

BADS WS04



Level O and OpenCL backends

Level Zero vs. OpenCL ° S“ght edge Wlth LO
* Try OpenCL too...

1.16

114

112

11

OpenCL

1.08

1.06

Speedup of LO over
.—-
o
I

Level
faster

is faster _ H

RTM

w

=

w
©

Wiris Xe

OpenCL




Single device conclusions

 Excellent performance, high device utilization (especially bandwidth in
these cases)

2 key options:
 Flat vs. nd_range

* Level Zero vs. OpenCL
 Largely independent of each other

 Currently often large differences, some reasons unclear
 You should definitely try both, differences even on simple kernels

* Go with SoA...



Multi-CPU, multi-GPU scaling

* All of the above from a single
NUMA domain

* Good understanding of
performance issues with OpenMP
on NUMA CPUs

* When available, use 1 MPI per socket

» Otherwise accesses to UPI/QPI
slower

* Multi-tile GPUs - NUMA
* PCl-e link to host
 Implicit scaling: use as one device

 Explicit scaling: can be treated as 2
devices

GPU Tile 1

GPU Tile 2




Multi-GPU scaling

* Data communication between tiles happens either through tile-to-tile
interconnect or the CPU, via PCl-e (a lot slower...)

* Options for explicit scaling:
« Manage multiple devices and queues from the same process
 Fast but not scalable...

» Manage 1 tile per MPI process

« Explicit copies through host memory
slow...

« GPU-Aware MPI (IMPI, MVAPICH2) RAM ( 1 GPU 1o
GPU buffers passed to MPI functions -

» Performance depends on implementation *} CPU
» Currently goes through the host

» But soon RDMA
* Long-term scalable solution!




J
ey

MPI Communications scheme

%

double *halo_buffer = cl::sycl::malloc_device(size, Queue); USM allocation of buffer
<o to hold halo data
Queue.submit([&](cl::sycl::handler &cgh) {...

cgh.parallel for<class pack _halo data>(...)}); Kernel to pack buffer
double *send buffer;
if (GPU_aware_ MPI)

send_buffer = halo buffer; When using GPU-aware MPI,

we can use the buffer directly

else
send buffer = ...; | N
Queue.copy(halo_buffer,send buffer, size); Otherwise copy to CPU explicitly

Queue.wait(); cond P
MPI_Send(send_buffer, ...); €n message

* USM is recommended for easy access to raw data and explicit copies
* Simple code path for with/without GPU-aware MPI
* Works on the CPU too — use “GPU-aware MPI” to avoid extra copy



MP| Communications scheme

“o: . ”
Compute Interior
Pack . Unpack Compute
P

Time

 Latency hiding scheme
» Concurrent streams of kernels and operations that are independent
* CPU free to process MP| comms while GPU is actively computing



Strong scaling Weak scaling

16 16

o

Runtime (seconds)
NS
Runtime (seconds)

1 tile 2 tile 2x2 tile 1 tile 2 tile 2x2 tile

==SNspLO ==RTM OpenCL ==SAsplLO CloverLeaf OpenCL ==SNspLO ==RTM OpenCL =—=SAsplLO CloverLeaf OpenCL

* Frequent MPI comms, all through CPU, without GPU-aware MPI (OpenMPI 4.1.3)
 Strong scaling: 45-75% parallel efficiency, weak scaling: 68-88%



Strong & weak scaling on Gold 6248

Strong scaling Weak Scaling
64 60

50

40

Runtime (seconds)
o0 b
(2]
Runtime (seconds)
w
o

1 socket 2 socket 2x2 socket 4x2 socket 1 socket 2 socket 2x2 socket 4x2 socket

==SNsp ==SAsp ==RTM CloverLeaf ==SNsp ==SAsp ==RTM CloverLeaf

« Strong scaling: 51-95% parallel efficiency, weak scaling: 91-98%




Copy-less transfers & GPU buffers

* IMPI has support for GPU buffers export I MPI OFFLOAD=2

* Results shown on CPU
*OpenSBLI SA sp

| \ 11% improvement ° 240’\3, 100 iterations
|
» Xeon Gold 6248

*MPT 22.2

[
(@)

4 ~1.42x

1 improvement

2x2 socket 4x2 socketin comms

Runtime (s)
S N

o
wn

1 socket 2 socket

== Total time w/o direct

==Total time w/ direct

== Comm time w/o direct
Comm time w/ direct



Improving scalability — communications

avoidance

* GPU-GPU communications still suffer from much higher latency
« GPU throughput vs. latency — small kernels/operations
« Comms initiated from CPU

* Applies to CPUs too to a lesser extent

* OPS support for reducing frequency of comms in exchange for larger
messages & redundant computations ;... o halo regions Process |

with redundant

» Cross-loop analysis and optimization compute

* Removes need for exchange on
some work arrays: reduced overall
volume

loopg — loopy

tileo tileo ti161

index=0 index=M

wider halo exchanges



Improving scalability — communications

avoidance

Strong scaling Weak Scaling
64 60
32 50
2 16 2 40
o o
Q Q
a A
= 8 o 30
£ £
5 4 € 20
o o
2 10
1 0
1 socket 2 socket 2x2 socket 4x2 socket 1 socket 2 socket 2x2 socket 4x2 socket

==SNsp ==SAsp ==RTM CloverLeaf ==SNsp ==SAsp ==RTM CloverLeaf

« SA sp improved efficiency: strong 51%->60% weak 91->97%
« RTM degraded efficiency: strong 77%->52% weak 97%->82%




Scalabllity conclusions

* NUMA-based GPUs — several ways to program
 Implicit vs. explicit scaling — explicit likely to win out
* Prepare for GPU-enabled MPI| — use USM & 2 code paths: works with CPU too
« Communications more expensive with GPUs due to worse latency
 Extra signaling, under-utilization

* Try and exploit concurrency
* Try and reduce number of messages, increase size




