
Pázmány Péter Catholic University
Faculty of Information Technology and Bionics

Intel CPUs and GPUs on 
structured-mesh stencil workloads 

with oneAPI 
Istvan Reguly (PPCU ITK), Mark Lubin (Intel), Xiao Zhu (Intel)



Structured-mesh stencil codes

• 1D-3D (or more) applications 
• i,j,k cartesian indexing, implicit connectivity
• „Trivial” parallelization:

• no loop carried dependencies
• possible reductions
• No implicit solvers (e.g. Gauss-Seidel)

• Oxford Parallel library for Structured meshes (OPS) – a DSL in C++

B[i][j] = 0.2 * (A[i][j]
               + A[i][j-1]
               + A[i][j+1]
               + A[i-1][j]
               + A[i+1][j]);

void poisson_kernel_stencil(ACC<double> &A, ACC<double> &Anew) {
 Anew(0,0) = 0.25f * ( A(1,0) + A(-1,0) + A(0,-1) + A(0,1));}



Look of a stencil loop - flat

• Simplest way to do things – does not prescribe anything about how 
work items should be grouped or mapped to hardware

 Anew(0,0) = 0.25f * 
( A(1,0) + A(-1,0)
+ A(0,-1) + A(0,1));

Expressed from viewpoint
of “current” gridpoint,
with relative offsets

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
  cgh.parallel_for<class apply_stencil>(

cl::sycl::range<2>(jmax, imax),
[=](cl::sycl::item<2> idx) {

...//Views, bounds checking

“Flat” parallel loop: just specify how many work items
per dimension are required



Look of a stencil loop – nd_range

 Anew(0,0) = 0.25f * 
( A(1,0) + A(-1,0)
+ A(0,-1) + A(0,1));

Expressed from viewpoint
of “current” gridpoint,
with relative offsets

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
  cgh.parallel_for<class apply_stencil>(

cl::sycl::nd_range<2>(
cl::sycl::range<2>(jmax, imax),
cl::sycl::range<2>(4,    32)),

[=](cl::sycl::nd_item<2> idx) {
...//Views, bounds checking

“nd_range” parallel loop: just specify how many work items
per dimension and split them into workgroups

• Explicit way of grouping work items and mapping them to hardware – 
can control/impact cache locality. But entirely up to the programmer!

• Could automate?



Test setup

• Intel(r) Xeon(r) Platinum 8360Y
• 36 cores @ 2.4 GHz (HyperThreading)
• BabelStream: 153 GB/s

• IRIS Xe MAX GPU
• 96 EU @ 1650 MHz
• BabelStream: 60.2 GB/s

• Xe-HP SDV GPU
• Scaling:

• Intel(R) Xeon(R) Gold 6248
• 20 cores @ 2.5 GHz
• BabelStream:  46 GB/s

High-level OPS code

SYCL source code

Clang/LLVM-based dpcpp compiler (oneAPI 22.1.2)

CPU (8360Y, 
6248)

IRIS Xe GPU
Xe-HP SDV 

GPU



Test applications

• CloverLeaf – 3D hydrodynamics (Mantevo suite) – 256^3
• Eulerian-Lagrangian
• Low-order stencils, bandwidth bound
• 50+ kernels – many on the boundary only

• RTM – 3D Acoustic wave propagation – 320^3
• Forward part of a seismic imaging application
• 8th order stencil
• 6 variables per point – AoS vs. SoA

• OpenSBLI – 3D Navier-Stokes solver
• Store All (SA) version – 80 loops, some 8th order stencils, mostly low-order, 

bandwidth bound – 240^3
• Stone None (SN) version – 18 loops, highly complex 4th order stencils, latency 

bound – 420^3



Loop formulation: nd_range or flat

• On GPUs, nd_range is 
almost always better

• RTM app workgroup size 
tuning:

• Default: 32x4x2
• Iris XE: +2.8%
• Xeon 8360Y: +11.7%

• Xeon 8360Y: RTM flat 
1.64x faster than 
nd_range

• no  size WG found that 
matches



Performance highlights

• Switching from single to double 
precision

• 2x the FLOP instructions (higher 
latency too)

• 2x the data movement
• OpenSBLI SN version mainly 
latency bound

• OpenSBLI SA version more 
bandwidth bound: closer to 2x



AoS vs. SoA on RTM

1.15x

1.33x



Level 0 and OpenCL backends

• Slight edge with L0
• Try OpenCL too…

Le
ve

l 
Ze

ro
 is

 
fa

st
er

O
p

en
C

L 
is

 fa
st

er



Single device conclusions

• Excellent performance, high device utilization (especially bandwidth in 
these cases)

• 2 key options:
• Flat vs. nd_range
• Level Zero vs. OpenCL
• Largely independent of each other

• Currently often large differences, some reasons unclear
• You should definitely try both, differences even on simple kernels

• Go with SoA…



Multi-CPU, multi-GPU scaling

• All of the above from a single 
NUMA domain

• Good understanding of 
performance issues with OpenMP 
on NUMA CPUs

• When available, use 1 MPI per socket
• Otherwise accesses to UPI/QPI 

slower
• Multi-tile GPUs - NUMA

• PCI-e link to host
• Implicit scaling: use as one device
• Explicit scaling: can be treated as 2 

devices

CPU 1 CPU 2

RAM RAM

CPU

GPU Tile 1

GPU Tile 2

RAM

RAM

PCI-e



Multi-GPU scaling

• Data communication between tiles happens either through tile-to-tile 
interconnect or the CPU, via PCI-e (a lot slower…)

• Options for explicit scaling:
• Manage multiple devices and queues from the same process

• Fast but not scalable…
• Manage 1 tile per MPI process

• Explicit copies through host memory
slow…

• GPU-Aware MPI (IMPI, MVAPICH2)
GPU buffers passed to MPI functions

• Performance depends on implementation
• Currently goes through the host
• But soon RDMA
• Long-term scalable solution!

CPU

GPU Tile 1

GPU Tile 2

RAM

RAM

PCI-e



MPI Communications scheme

• USM is recommended for easy access to raw data and explicit copies
• Simple code path for with/without GPU-aware MPI
• Works on the CPU too – use “GPU-aware MPI” to avoid extra copy

USM allocation of buffer 
to hold halo data

Kernel to pack buffer

When using GPU-aware MPI,
we can use the buffer directly

Otherwise copy to CPU explicitly

Send MPI message

double *halo_buffer = cl::sycl::malloc_device(size, Queue); 
...
Queue.submit([&](cl::sycl::handler &cgh) {...
 cgh.parallel_for<class pack_halo_data>(...)}); 
double *send_buffer; 
if (GPU_aware_MPI) 
  send_buffer = halo_buffer;
else
  send_buffer = ...;
  Queue.copy(halo_buffer,send_buffer, size);
Queue.wait();
MPI_Send(send_buffer, ...);



MPI Communications scheme

• Latency hiding scheme
• Concurrent streams of kernels and operations that are independent
• CPU free to process MPI comms while GPU is actively computing

Compute “interior”

Pack 
halo

MPI Send-Receive
Unpack 

halo
Compute 
boundary

Time



Strong & weak scaling on Xe-HP SDV

• Frequent MPI comms, all through CPU, without GPU-aware MPI (OpenMPI 4.1.3)
• Strong scaling: 45-75% parallel efficiency, weak scaling: 68-88%



Strong & weak scaling on Gold 6248

• Strong scaling: 51-95% parallel efficiency, weak scaling: 91-98%



Copy-less transfers & GPU buffers

• IMPI has support for GPU buffers export I_MPI_OFFLOAD=2
• Results shown on CPU

~1.42x 
improvement 
in comms

11% improvement 
overall

• OpenSBLI SA sp
• 240^3, 100 iterations

• Xeon Gold 6248
• MPT 22.2



Improving scalability – communications 
avoidance

• GPU-GPU communications still suffer from much higher latency
• GPU throughput vs. latency – small kernels/operations
• Comms initiated from CPU

• Applies to CPUs too to a lesser extent
• OPS support for reducing frequency of comms in exchange for larger 
messages & redundant computations

• Cross-loop analysis and optimization
• Removes need for exchange on
some work arrays: reduced overall
volume



Improving scalability – communications 
avoidance

• SA sp improved efficiency: strong 51%->60% weak 91->97%
• RTM degraded efficiency: strong 77%->52% weak 97%->82%



Scalability conclusions

• NUMA-based GPUs – several ways to program
• Implicit vs. explicit scaling – explicit likely to win out
• Prepare for GPU-enabled MPI – use USM & 2 code paths: works with CPU too

• Communications more expensive with GPUs due to worse latency
• Extra signaling, under-utilization
• Try and exploit concurrency
• Try and reduce number of messages, increase size


