
Performance impact of formulating
computations in SYCL on CPUs and GPUs

István Reguly, PPCU ITK
reguly.istvan@itk.ppke.hu
oneAPI DevSummit 2023

mailto:reguly.istvan@itk.ppke.hu

Performance & Portability with SYCL

• Goal of SYCL: single high-level C++ code, many target architectures
• Portability
• Developer productivity

• A lot of work to make it possible
• DPC++ compiler, OpenSYCL compiler
• GPUs covered well (Intel, NVIDIA, AMD)
• CPUs less so

• Performance portability?
• Multiple ways of expressing computation
• How well does it map to the hardware?
• SIMT maps well to GPUs, not great to CPUs

Simplest case – 2D/3D iteration space

• Simplest way to do things – does not prescribe anything about how work
items should be grouped or mapped to hardware

Anew(0,0) = 0.25f *
(A(1,0) + A(-1,0)
+ A(0,-1) + A(0,1));

Expressed from viewpoint
of “current” gridpoint,
with relative offsets

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
cgh.parallel_for<class apply_stencil>(

cl::sycl::range<2>(jmax, imax),
[=](cl::sycl::item<2> idx) {

...//Views, bounds checking

“Flat” parallel loop: just specify how many work items
per dimension are required

Look of a stencil loop – nd_range

Anew(0,0) = 0.25f *
(A(1,0) + A(-1,0)
+ A(0,-1) + A(0,1));

Expressed from viewpoint
of “current” gridpoint,
with relative offsets

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
cgh.parallel_for<class apply_stencil>(

cl::sycl::nd_range<2>(
cl::sycl::range<2>(jmax, imax),
cl::sycl::range<2>(4, 32)),

[=](cl::sycl::nd_item<2> idx) {
...//Views, bounds checking

“nd_range” parallel loop: just specify how many work items
per dimension and split them into workgroups

• Explicit way of grouping work items and mapping them to hardware – can
control/impact cache locality. But entirely up to the programmer!
• Flat still has to map to this – but runtime gets to decide how (what sizes/granularity)

Structured-mesh stencil codes

• Boilerplate generated by OPS
• Pure MPI, MPI+OpenMP, MPI+SYCL (CUDA/HIP/OpenCL/OpenACC)

• CloverLeaf 2D/3D – 7680^2, 408^3
• Hydrodynamics code from AWE, part of Mantevo suite
• ~100 nested loops, ~35 doubles per grid point, lots of small boundary loops

• OpenSBLI – Shock Boundary Layer Interactions - 320^3
• Finite Difference Navier-Stokes solver with shock capturing from Univ of Southampton
• High-level pyhton interface, generates OPS
• Two versions – Store All (SA) or Store None (SN) – how much recompute for derivatives

• Acoustic solver – 320^3
• 8th order finite differences
• Very costly MPI halo exchanges
• Two variants

Performance on Intel Ice Lake + DPC++

21.53

22.47

24.34 21.50 18.25

25.12

25.55

32.06

19.89 16.08

24.63

24.99

29.73

19.69 15.69

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

CloverLeaf 2D CloverLeaf 3D OpenSBLI SA OpenSBLI SN Acoustic

Ru
nt

im
e(

s)

Xeon 8360Y application runtimes

MPI+OpenMP MPI+SYCL flat MPI+SYCL ndrange

DPC++ on CPUs vs. OpenMP
• More scheduling

overhead
• Better vectorization
• Flat uses good guess for

WG size
• nd_range:
• get_global_id(0) vs.
get_global_id()[0]

6

OneAPI Base/HPC toolkit 2023.0

Performance on AMD MI250X (1GCD)

7

4.60

5.84

10.35

6.52 5.25

7.51

11.89

8.19 6.475.53

7.08

12.39

7.38 5.69

6.36

6.52

18.63

7.27

9.97

4.87

6.52

11.29

7.27

4.75

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

CloverLeaf CloverLeaf 3D OpenSBLI SA OpenSBLI SN Acoustic

Ru
nt

im
e

(s
)

MI250X application runtimes

HIP DPC++ Flat DPC++ ndrange OpenSYCL flat OpenSYCL ndrange

DPC++ and OpenSYCL
• Very close to HIP
• Flat sometimes very bad

WG size
• nd_range:
• Tuned size - up to 30% vs

“reasonable default”
• Higher SGPR use
• More INT instructions
• Lower occupancy
• But better cache

performance

Performance on NVIDIA A100

8

DPC++ and OpenSYCL
• Very close to CUDA
• DPC++ better choice of

flat WG sizes
• nd_range:
• Tuned size - up to 30% vs

“reasonable default”, but
lot less than MI250X3.83

3.89

6.58

3.36

3.14

4.48

6.64

4.74 3.47

3.87

3.94

6.67

3.70

3.20

4.26

6.20

15.08

8.65

4.35

4.07

4.22

6.73

3.36

3.57

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

CloverLeaf CloverLeaf 3D OpenSBLI SA OpenSBLI SN Acoustic

Ru
nt

im
e

(s
)

A100 application runtimes

CUDA DPC++ Flat DPC++ ndrange OpenSYCL flat OpenSYCL ndrange

Unstructured mesh applications

• More complex computations
• Data-driven dependencies
• Common pattern of computation:
• Loop over cells, compute something
• Add/subtract to data on connected edges

• Parallel execution has to consider race conditions
• Data reuse & spatial/temporal locality non-trivial

cell0

cell1

ed
ge

Unstructured mesh execution strategies

• Sequential execution – edge after edge, updating vertices. Good data locality
• Resolving race conflicts in shared memory parallel environments
• Global coloring

• Very simple, no data locality
• Hierarchical coloring

• Parallelism between blocks, sequential/parallel within block
• Data locality within blocks, not across

• Atomics (fp64)
• Limited support/performance
• Good data locality

• Not all can be used for different
hardware, performance varies too
• No performance portability…

10

8 Reguly et al.

Block 0
Block 1

Block 2

Block 0
Block 1

Block 2

Fig. 5. Coloring strategies in OP2 – global (left) and hierarchical (right)

mapping (edges-to-nodes), such that no two edges with the same color share a node.
During execution, edges with the same color can now be executed in parallel, with
a synchronization between colors. The second strategy, called hierarchical coloring,
performs two levels of coloring. First, the mesh is split into blocks of edges, and the
blocks colored such that no two blocks with the same color share any node. Second,
edges within the block are greedily colored. During execution, blocks of the same color
can be executed in parallel, and within blocks there is further parallelism, so edges of the
same color can be executed in parallel. This hierarchical scheme maps to architectures
with hierarchical parallelism, for example blocks map to OpenMP threads or CUDA
thread blocks, and intra-block parallelism maps to vector units or CUDA threads. We
map this hierarchical scheme to nd_range parallel for loops in SYCL.

The SYCL parallelization with global coloring starts by extracting the SYCL typed
buffers from OP2’s data structures (Figure 4, lines 1-5). The iteration set, in this case
the mesh edges, has been colored by OP2, with coloring information stored in internal
struct Plan. For SYCL execution, this coloring information is also stored in a SYCL
integer buffer. An outer loop over colors initiates parallel execution across edges of the
same color (line 9). Edge indices are held in the col_reord array, with edges of the
same color stored consecutively. The current color determines the loop range start
to end, read from Plan->col_offsets, determining which edges of col_reord to
iterate through for that particular parallel execution.

Similar to the setup required for executing an OpenCL kernel, the arguments for the
execution kernel, the kernel itself and any global constants referenced by it are enqueued
(lines 15-30). The kernel itself is specified as a lambda function (lines 25-30). Next,
the SYCL kernel is set with flat parallelism, so that nthread*nblocks work items
are launched (lines 51-53). The indirections are resolved by using the edge index n to
access the indices held in the mapping table opDat0Map (lines 40-41). The elemental
kernel is called with these indices, together with the directly accessed data as arguments
(lines 44-47).

The advantage of global coloring is its simplicity – it can be easily expressed in any
parallel programming environment. The main disadvantage with global coloring is the
loss of data-reuse between edges that share a node, as these edges will necessarily have
different colors, so reducing temporal locality. A further disadvantage is reduced spatial
locality, as elements of the same color are distributed more sparsely in memory.

The hierarchical coloring scheme maps well to GPU architectures, and in principle
to CPU threads and vector units as well. However, the OpenMP-based implementations
(hipSYCL) have a mismatch between the abstraction and the implementation, leading
to poor performance; they need to launch one thread per work item when using two-

Global coloring Hierarchical coloring

MG-CFD – OP2 UNSTRUCTURED MESH

• MG-CFD: A proxy application of Rolls-Royce Hydra
• Open-source multigrid unstructured mesh mini-application – easy to use, modify,

distribute
• Capture key performance characteristics:

CFD computation, FV, unstructured mesh, multigrid
• NASA Rotor37, 4 multigrid levels,

8M vertices on finest level

https://github.com/warwick-hpsc/MG-CFD-app-[plain, OP2]
Owenson A.M.B., Wright S.A., Bunt R.A., Ho Y.K., Street M.J., and Jarvis S.A. (2019), An Unstructured CFD Mini-Application

for the Performance Prediction of a Production CFD Code, Concurrency Computat: Pract Exper., 2019

11

Performance on Cascade Lake CPU

• MPI+SIMD: “ideal” performance
• Explicit vector pack/unpack

• OpenMP
• Further loss of data locality
• No vectorization

• SYCL
• Hier NOSIMD: matches OpenMP
• Global: vectorizes, but poor locality
• Hier: vectorizes, but…

12

8.11

12.01 11.48

19.80
20.88

0.00

5.00

10.00

15.00

20.00

25.00

MPI+SIM
D

MPI+OpenMP

MPI+SY
CL h

ier N
OSIM

D

MPI+SY
CL h

ier

MPI+SY
CL g

lobal

Ru
nt

im
e

(s
)

Cascade Lake MG-CFD runtime

Performance on AMD MI250X (1 GCD)

• OpenSYCL had to use “safe”
atomics, HIP/DPC++ unsafe
• Atomic:

• 3500 byte/wave read
• 800 byte/wave write
• 91% cache hit in L2

• Global:
• 39000 byte/wave read
• 8500 byte/wave write
• 58% cache hit in L2

• Hierarchical:
• 8600 byte/wave read
• 2700 byte/wave write
• 83% cache hit in L2

13

1.54

7.30

3.19

1.71

7.87

4.12

2.73

7.45

3.85

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Atomics Global Hierarchical

Ru
nt

im
e

(s
)

MI250X on MG-CFD

HIP DPCPP OpenSYCL

Performance on NVIDIA A100

14

1.43

3.45
2.78

1.30

3.57

2.74

1.21

3.37
2.70

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Atomics Global Hierarchical

Ru
nt

im
e

(s
)

A100 on MG-CFD

CUDA DPCPP OpenSYCL

Conclusions

• Flat vs. nd_range formulation: good guess by runtime (bad from user!)
• Key challenge: understanding mapping from SYCL code (SIMT abstraction) to

the hardware
• Reasonably trivial for GPU architectures, where the hardware is a good fit for SIMT
• Still problematic for SIMD architectures (such as CPUs)

• oneAPI is quite aggressive about vectorization, and the sub-group API really helps with mapping to
SIMD. Performance getting quite close

• SYCL a much more productive alternative to OpenCL, and performance is
improving rapidly
• But the challenges in terms of performance portability remain

• Thanks to Intel for help through the oneAPI Innovator program

15

