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Performance & Portability with SYCL

» Goal of SYCL: single high-level C++ code, many target architectures
* Portability
* Developer productivity

* A lot of work to make it possible

* DPC++ compiler, OpenSYCL compiler
* GPUs covered well (Intel, NVIDIA, AMD)
* CPUs less so

* Performance portability?
* Multiple ways of expressing computation
 How well does it map to the hardware?
* SIMT maps well to GPUs, not great to CPUs



Simplest case — 2D/3D iteration space

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
cgh.parallel for<class apply stencil>(
cl::sycl::range<2>(jmax, imax),
[=](cl::sycl::item<2> idx) {
...//Views, bounds checking

“Flat” parallel loop: just specify how many work items
per dimension are required

Anew(0,0) = 0.25F * Expressed from viewpoint
( A(1,0) + A(-1,0) of “current” gridpoint,
+ A(9,-1) + A(9,1)); with relative offsets

e Simplest way to do things — does not prescribe anything about how work
items should be grouped or mapped to hardware
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Look of a stencil loop — nd range

~

€

Queue.submit([&](cl::sycl::handler &cgh) {
...//Accessors
cgh.parallel for<class apply stencil>(
cl::sycl::nd_range<2>(
cl::sycl::range<2>(jmax, imax),
cl::sycl::range<2>(4, 32)),

“nd_range” parallel loop: just specify how many work items
per dimension and split them into workgroups

[=](cl::sycl::nd _item<2> idx) { !
...//Views, bounds checking I H I
Anew(0,0) = 0.25F * Expressed from viewpoint ==
( A(1,0) + A(-1,0) of “current” gridpoint, T -
+ A(9,-1) + A(9,1)); with relative offsets

* Explicit way of grouping work items and mapping them to hardware — can
control/impact cache locality. But entirely up to the programmer!

* Flat still has to map to this — but runtime gets to decide how (what sizes/granularity)




Structured-mesh stencil codes

 Boilerplate generated by OPS
e Pure MPI, MPI+OpenMP, MPI+SYCL (CUDA/HIP/OpenCL/OpenACC)

* CloverLeaf 2D/3D — 768072, 40873

* Hydrodynamics code from AWE, part of Mantevo suite
* ~100 nested loops, ~35 doubles per grid point, lots of small boundary loops

* OpenSBLI — Shock Boundary Layer Interactions - 32073
 Finite Difference Navier-Stokes solver with shock capturing from Univ of Southampton
* High-level pyhton interface, generates OPS
* Two versions — Store All (SA) or Store None (SN) — how much recompute for derivatives

e Acoustic solver — 32073
e 8th order finite differences
* Very costly MPI halo exchanges
* Two variants



Performance on Intel Ice Lake + DPC++
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Performance on AMD MI250X (1GCD)

MI250X application runtimes DPC++ and OpenSYCL
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Performance on NVIDIA A100
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DPC++ and OpenSYCL
* Very close to CUDA

e DPC++ better choice of
flat WG sizes

* nd_range:
* Tuned size - up to 30% vs

“reasonable default”, but
lot less than MI250X



Unstructured mesh applications

* More complex computations
e Data-driven dependencies

 Common pattern of computation:
* Loop over cells, compute something
* Add/subtract to data on connected edges

 Parallel execution has to consider race conditions o128 2 oty

» Data reuse & spatial/temporal locality non-trivial




Unstructured mesh execution strategies

* Sequential execution — edge after edge, updating vertices. Good data locality

* Resolving race conflicts in shared memory parallel environments
* Global coloring
* Very simple, no data locality

* Hierarchical coloring
* Parallelism between blocks, sequential/parallel within block
* Data locality within blocks, not across
e Atomics (fp64)
 Limited support/performance
* Good data locality

* Not all can be used for different
hardware, performance varies too

* No performance portability...

Global coloring Hierarchical coloring




MG-CFD — OP2 UNSTRUCTURED MESH

* MG-CFD: A proxy application of Rolls-Royce Hydra
e Open-source multigrid unstructured mesh mini-application — easy to use, modify,
distribute

e Capture key performance characteristics:
CFD computation, FV, unstructured mesh, multigrid

* NASA Rotor37, 4 multigrid levels,
8M vertices on finest level

https://github.com/warwick-hpsc/MG-CFD-app-[plain, OP2]
Owenson A.M.B., Wright S.A., Bunt R.A., Ho Y.K., Street M.J., and Jarvis S.A. (2019), An Unstructured CFD Mini-Application
for the Performance Prediction of a Production CFD Code, Concurrency Computat: Pract Exper., 2019




Performance on Cascade Lake CPU
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* MPI+SIMD: “ideal” performance
 Explicit vector pack/unpack

* OpenMP
e Further loss of data locality
* No vectorization

* SYCL
e Hier NOSIMD: matches OpenMP
* Global: vectorizes, but poor locality
* Hier: vectorizes, but...




Performance on AMD MI250X (1 GCD)
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Performance on NVIDIA A100
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Conclusions

* Flat vs. nd_range formulation: good guess by runtime (bad from user!)

* Key challenge: understanding mapping from SYCL code (SIMT abstraction) to
the hardware

* Reasonably trivial for GPU architectures, where the hardware is a good fit for SIMT

* Still problematic for SIMD architectures (such as CPUs)

* oneAPl is quite aggressive about vectorization, and the sub-group API really helps with mapping to
SIMD. Performance getting quite close

* SYCL a much more productive alternative to OpenCL, and performance is
improving rapidly
* But the challenges in terms of performance portability remain

* Thanks to Intel for help through the oneAPI Innovator program



