
Mar 31, 2021

Thesis Defense, PhD Prelim Exam

Multiarchitecture Hardware
Acceleration of Hyperdimensional
Computing Using oneAPI

Ian Peitzsch
Research Student

University of Pittsburgh
oneAPI August 2023 DevSummit

August 21, 2023

Dr. Alan George
Mickle Chair Professor of ECE

University of Pittsburgh

Agenda
§ What is SHREC?
§ Background
§ System Overview
§ Approach
§ Results
§ Conclusions

2

3

What is SHREC?
§ NSF Center for Space, High-Performance, & Resilient Computing

§ Founded in Sep. 2017, replacing highly successful NSF CHREC Center
§ Leading ECE research groups @ four major universities
• University of Pittsburgh (lead)
• Brigham Young University (partner)
• University of Florida (partner)
• Virginia Tech (partner)

§ Under auspices of IUCRC Program at NSF
§ Industry-University Cooperative Research Centers
• Fostering university, agency, and industry R&D collaborations

§ SHREC is both National Research Center and Consortium
• University groups serve as research base (faculty, students, staff)
• Industry & government organizations are research partners, sponsors,

collaborators, advisory board, & technology-transfer recipients

4

Center Mission Theme: Mission-Critical Computing

Basic and applied R&D to advance S&T
on advanced computing.

Many common challenges,
technologies, & benefits, in terms of

performance, power, adaptivity,
productivity, cost, size, etc.

From architectures to applications
to design concepts and tools.

From spacecraft to supercomputers!

SHREC

Space
Computing

High-Performance
Computing

Resilient
Computing

5

Research Interaction

Basic Research Applied R&D

Universities Industry &
Government

Center

NSF Model for IUCRC Centers

Hyperdimensional Computing
§ Researchers observed brains represent and operate on

data using randomly assorted neurons
§ Hyperdimensional computing (HDC) is a machine learning

paradigm that mimics this behavior using very large,
randomly generated vectors

§ HDC is easily pipelined and/or parallelized making it a
good target for hardware acceleration

6

Hyperdimensional Computing
§ Hypervectors

§ Very large vectors
§ Base representation of data in

HDC
§ “Curse of dimensionality”

§ In high-dimensional spaces,
randomly generated vectors
are nearly orthogonal

§ Can exploit this by
representing semantically
different things as different
randomly generated vectors

8

HDC Operations
§ Similarity

§ Measures “relatedness” of hypervectors
§ 𝛿 𝐴, 𝐵 ≈ 0 means A and B are unrelated
§ 𝛿 𝐴, 𝐵 ≫ 0 means A and B are related

§ Often implemented as cosine similarity 𝛿 𝐴, 𝐵 = !⋅#
! |#|

§ Bundling
§ Combines hypervectors into a hypervector that is similar

to the inputs
§ Often implemented as elementwise addition

9

HDC Operations
§ Binding

§ Combines hypervectors to create a hypervector that is
dissimilar to the inputs

§ Think of it as a generalized cross product
§ Often implemented as XOR for binary hypervectors

§ Permutation
§ Rotates the elements in a hypervector
§ Creates a hypervector that is dissimilar to the inputs
§ Often used to encode positional or temporal data

10

HDC Learning
§ Encoding

§ Uses randomly generated basis
hypervectors to map feature
vectors to hyperdimensional
space

§ Implementation is dependent on
the application

§ Implementations often include
look-up tables or non-linear
transforms

§ Each class is represented as
a hypervector

11

HDC Training

12

Encoding

Class 1

Class 2

Class N

Feature
Vector

Class L
Label L

Transform input to
hyperdimensional
space

Bundle hypervector
into corresponding
class hypervector⋮

⋮

HDC Inference

13

Encoding

Class 1

Class 2

Class N

δ

δ

δ

Choose
class
with
highest
similarity

Feature
Vector

Transform input to
hyperdimensional
space

Calculate similarity
to all class
hypervectors

⋮

NeuralHD
§ Novel training algorithm

§ Updates encoding bases to optimize the encoding
scheme for the desired application

§ Based on neural regeneration
§ Encoder optimization

§ Calculates dimension-wise variance of class
hypervectors

§ Lowest variance dimensions are zeroed in all classes
§ Bases corresponding to the lowest variance dimensions

are regenerated

14

NeuralHD

15

Training

Dimension-wise Variance

To Drop

Drop Classes

Regenerate Bases

Calculate variance
for each dimension
across classes

Identify which
dimensions to drop

Regenerate corresponding
basis hypervectors

Zero-out dimensions in
class hypervectors

Train for an arbitrary
number of iterations

oneAPI
§ Open, multiarchitecture

accelerator framework
§ Uses SYCL and C++
§ Single-source development
§ Offers various libraries with

pre-optimized functions

16

oneAPI Execution
§ Command queues

§ Host uses queues to send command groups to
accelerator

§ parallel_for
§ GPUs & CPUs: data-parallel execution of command

group using threads
§ FPGAs: autopipelined loop

§ single_task
§ Command group is executed as a single thread
§ Mostly used with FPGAs

17

oneAPI Memory Management
§ Unified Shared Memory (USM)

§ Uses pointers
§ Explicit data movement: developer specifies when data is moved
§ Implicit data movement: data movement abstracted away

§ Buffers and Accessors
§ Buffers are wrappers around data
§ Accessors are used to access the data in buffers
§ Abstracts away data movement

§ Pipes
§ Only for FPGAs
§ Uses on-device FIFOs to pass data between kernels

18

HDC Model
§ 2000 hyperdimensions of FP32
§ Encoding scheme

19

B1

B2

B2000 Cosine

Cosine

Cosine

h1

h2

h2000

H

Input
Feature
Vector

Calculate dot-product
between input and
each basis
hypervector

Resultant encoded
hypervector

⋮ ⋮ ⋮

FPGA Inference Design

20

CPU

FPGA

Producer

Encoding
Module

Encoding
Module

Classifier Consumer⋮

Input
Feature
Vector Inference

Each module calculates
a smaller portion of the
hypervector

FPGA Single-Pass Training Design

21

CPU

FPGA

Producer

Encoding
Module

Encoding
Module

Fitting Consumer⋮

Input
Feature
Vectors

Trained
Classes

FPGA NeuralHD Design

22

CPU

FPGA

Encoding
Module Fitting

Variance

Regenerate

Input
Feature
Vectors

Encoded
Hypervectors

Trained
Classes

GPU

ClassifyingEncoding

GPU Inference Design

23

CPU

oneMKL
GEMM ClassifierCosine

Inference

Encoded
HypervectorInput

Feature
Vector

Parallelized by giving
each thread its own
hypervector to infer

oneMKL: Intel® oneAPI Math Kernel Library
GEMM: GEneral Matrix Multiplication

GPU

FittingEncoding

GPU Single-Pass Training Design

24

CPU

oneMKL
GEMM FitterCosine

Input
Feature
Vectors

Trained
Classes

Parallelized by giving
each thread a class

Encoded
Hypervector

oneMKL: Intel® oneAPI Math Kernel Library
GEMM: GEneral Matrix Multiplication

GPU

FittingEncoding

GPU NeuralHD Design

25

CPU

Regenerate

Variance Regen

Input
Feature
Vectors

Encoded
Hypervector

Trained
Classes

Trains local classes and
then averages them

Hardware
§ Intel Stratix 10 (PAC D5005)

§ 16 GB DDR RAM
§ Intel UHD 630

§ Integrated GPU
§ 32 GB DDR RAM

§ Intel Xeon Platinum 8256
§ 3.8 GHz
§ 4 Cores
§ 192 GB DDR RAM

26

Experiment
§ Benchmark single-pass training, NeuralHD

training, inference latency, and throughput
§ Used MNIST handwritten digits dataset

§ 60000 training images, 1000 test images
§ 28x28 monochrome images

27

Single-Pass Training

28

§ All models achieved ~89% accuracy

Nearly 60x speedup

§ FPGA and CPU
achieved ~97%
accuracy

§ GPU achieved
~94% accuracy

§ Not as great of
speedup
compared to
single-pass

NeuralHD Training

29

Nearly 14x
speedup

Inference Throughput

30

FPGA has highest
throughput for smaller
batch sizes

GPU achieves
highest throughput
once all threads are
being used

Inference Latency

31

Just over 3x speedup

Slowdown due to lower
thread utilization

Conclusions
§ GPU achieves greatest speedups for throughput,

single-pass training, and NeuralHD training
§ All of these tasks demand high throughput
§ UHD architecture and GPU HDC implementation has

higher degree of parallelism leading to greater
throughput

§ GPU exhibits slowdown for inference latency
§ FPGA achieves greatest speedup for inference

latency
§ Latency likely able to be improved further through

quantization

32

33

Questions?

