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What is SHREC?
§ NSF Center for Space, High-Performance, & Resilient Computing

§ Founded in Sep. 2017, replacing highly successful NSF CHREC Center
§ Leading ECE research groups @ four major universities
• University of Pittsburgh (lead)
• Brigham Young University (partner)
• University of Florida (partner)
• Virginia Tech (partner)

§ Under auspices of IUCRC Program at NSF
§ Industry-University Cooperative Research Centers
• Fostering university, agency, and industry R&D collaborations

§ SHREC is both National Research Center and Consortium
• University groups serve as research base (faculty, students, staff)
• Industry & government organizations are research partners, sponsors, 

collaborators, advisory board, & technology-transfer recipients
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Center Mission Theme: Mission-Critical Computing

Basic and applied R&D to advance S&T 
on advanced computing.  

Many common challenges, 
technologies, & benefits, in terms of 

performance, power, adaptivity, 
productivity, cost, size, etc.  

From architectures to applications 
to design concepts and tools.

From spacecraft to supercomputers!

SHREC

Space
Computing

High-Performance 
Computing

Resilient 
Computing
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Research Interaction  

Basic Research Applied R&D

Universities Industry & 
Government

Center

NSF Model for IUCRC Centers



Hyperdimensional Computing 
§ Researchers observed brains represent and operate on 

data using randomly assorted neurons
§ Hyperdimensional computing (HDC) is a machine learning 

paradigm that mimics this behavior using very large, 
randomly generated vectors

§ HDC is easily pipelined and/or parallelized making it a 
good target for hardware acceleration
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Hyperdimensional Computing
§ Hypervectors

§ Very large vectors
§ Base representation of data in 

HDC
§ “Curse of dimensionality”

§ In high-dimensional spaces, 
randomly generated vectors 
are nearly orthogonal

§ Can exploit this by 
representing semantically 
different things as different 
randomly generated vectors
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HDC Operations
§ Similarity

§ Measures “relatedness” of hypervectors
§ 𝛿 𝐴, 𝐵 ≈ 0 means A and B are unrelated
§ 𝛿 𝐴, 𝐵 ≫ 0 means A and B are related

§ Often implemented as cosine similarity 𝛿 𝐴, 𝐵 = !⋅#
! |#|

§ Bundling
§ Combines hypervectors into a hypervector that is similar 

to the inputs
§ Often implemented as elementwise addition
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HDC Operations
§ Binding

§ Combines hypervectors to create a hypervector that is 
dissimilar to the inputs

§ Think of it as a generalized cross product
§ Often implemented as XOR for binary hypervectors

§ Permutation
§ Rotates the elements in a hypervector
§ Creates a hypervector that is dissimilar to the inputs
§ Often used to encode positional or temporal data
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HDC Learning
§ Encoding

§ Uses randomly generated basis 
hypervectors to map feature 
vectors to hyperdimensional 
space

§ Implementation is dependent on 
the application

§ Implementations often include 
look-up tables or non-linear 
transforms

§ Each class is represented as 
a hypervector
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HDC Training
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HDC Inference
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NeuralHD
§ Novel training algorithm

§ Updates encoding bases to optimize the encoding 
scheme for the desired application

§ Based on neural regeneration
§ Encoder optimization

§ Calculates dimension-wise variance of class 
hypervectors

§ Lowest variance dimensions are zeroed in all classes
§ Bases corresponding to the lowest variance dimensions 

are regenerated
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NeuralHD
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Training

Dimension-wise Variance

To Drop

Drop Classes

Regenerate Bases

Calculate variance 
for each dimension 
across classes

Identify which 
dimensions to drop 

Regenerate corresponding 
basis hypervectors

Zero-out dimensions in 
class hypervectors

Train for an arbitrary 
number of iterations



oneAPI
§ Open, multiarchitecture 

accelerator framework
§ Uses SYCL and C++
§ Single-source development 
§ Offers various libraries with 

pre-optimized functions
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oneAPI Execution
§ Command queues

§ Host uses queues to send command groups to 
accelerator

§ parallel_for
§ GPUs & CPUs: data-parallel execution of command 

group using threads
§ FPGAs: autopipelined loop

§ single_task
§ Command group is executed as a single thread
§ Mostly used with FPGAs
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oneAPI Memory Management
§ Unified Shared Memory (USM)

§ Uses pointers
§ Explicit data movement: developer specifies when data is moved
§ Implicit data movement: data movement abstracted away 

§ Buffers and Accessors 
§ Buffers are wrappers around data
§ Accessors are used to access the data in buffers
§ Abstracts away data movement

§ Pipes
§ Only for FPGAs
§ Uses on-device FIFOs to pass data between kernels
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HDC Model
§ 2000 hyperdimensions of FP32
§ Encoding scheme
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FPGA Inference Design
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FPGA Single-Pass Training Design
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FPGA NeuralHD Design
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GPU

ClassifyingEncoding

GPU Inference Design
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CPU
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Encoded 
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Vector

Parallelized by giving 
each thread its own 
hypervector to infer

oneMKL: Intel® oneAPI Math Kernel Library
GEMM: GEneral Matrix Multiplication



GPU

FittingEncoding

GPU Single-Pass Training Design
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GPU

FittingEncoding

GPU NeuralHD Design
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Hardware
§ Intel Stratix 10 (PAC D5005)

§ 16 GB DDR RAM 
§ Intel UHD 630

§ Integrated GPU
§ 32 GB DDR RAM

§ Intel Xeon Platinum 8256
§ 3.8 GHz
§ 4 Cores
§ 192 GB DDR RAM
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Experiment
§ Benchmark single-pass training, NeuralHD 

training, inference latency, and throughput 
§ Used MNIST handwritten digits dataset

§ 60000 training images, 1000 test images
§ 28x28 monochrome images
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Single-Pass Training
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§ All models achieved ~89% accuracy

Nearly 60x speedup



§ FPGA and CPU 
achieved ~97% 
accuracy

§ GPU achieved 
~94% accuracy

§ Not as great of 
speedup 
compared to 
single-pass

NeuralHD Training
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Nearly 14x 
speedup



Inference Throughput
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FPGA has highest 
throughput for smaller 
batch sizes

GPU achieves 
highest throughput 
once all threads are 
being used



Inference Latency
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Just over 3x speedup

Slowdown due to lower 
thread utilization



Conclusions
§ GPU achieves greatest speedups for throughput, 

single-pass training, and NeuralHD training
§ All of these tasks demand high throughput
§ UHD architecture and GPU HDC implementation has 

higher degree of parallelism leading to greater 
throughput

§ GPU exhibits slowdown for inference latency
§ FPGA achieves greatest speedup for inference 

latency
§ Latency likely able to be improved further through 

quantization
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Questions?


