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What is SHREC?

= NSF Center for Space, High-Performance, & Resilient Computing

= Founded in Sep. 2017, replacing highly successful NSF CHREC Center
= Leading ECE research groups @ four major universities AL
* University of Pittsburgh (lead)
* Brigham Young University (partner)
* University of Florida (partner)
* Virginia Tech (partner)
= Under auspices of IUCRC Program at NSF

* Industry-University Cooperative Research Centers
* Fostering university, agency, and industry R&D collaborations
= SHREC is both National Research Center and Consortium

* University groups serve as research base (faculty, students, staff)

* Industry & government organizations are research partners, sponsors,
collaborators, advisory board, & technology-transfer recipients
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Center MiS Si()n Theme: Mission-Critical Computing

Basic and applied R&D to advance S&T
on advanced computing.

Space
Computing Many common challenges,
technologies, & benefits, in terms of

performance, power, adaptivity,

productivity, cost, size, etc.

From architectures to applications
to design concepts and tools.

From spacecraft to supercomputers!

Resilient
Computing

High-Performance
Computing
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NSF Model for IUCRC Centers

Research Interaction

Basic Research Applied R&D
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Hyperdimensional Computing

= Researchers observed brains represent and operate on
data using randomly assorted neurons

= Hyperdimensional computing (HDC) is a machine learning
paradigm that mimics this behavior using very large,
randomly generated vectors

= HDC is easily pipelined and/or parallelized making it a
good target for hardware acceleration
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Hyperdimensional Computing

Hypervectors

* Very large vectors

= Base representation of data in
HDC

“Curse of dimensionality”

* In high-dimensional spaces,
randomly generated vectors
are nearly orthogonal YRES

= Can exploit this by
representing semantically
different things as different
randomly generated vectors
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HDC Operations

= Similarity
» Measures “relatedness” of hypervectors
= §(4, B) ~ 0 means A and B are unrelated

= §(4,B) » 0 means A and B are related

= Often implemented as cosine similarity §(4, B) = _Ijlll.lil

= Bundling

» Combines hypervectors into a hypervector that is similar
to the inputs

= Often implemented as elementwise addition
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HDC Operations

* Binding
= Combines hypervectors to create a hypervector that is
dissimilar to the inputs
* Think of it as a generalized cross product

= Often implemented as XOR for binary hypervectors

= Permutation

» Rotates the elements in a hypervector
= Creates a hypervector that is dissimilar to the inputs
= Often used to encode positional or temporal data
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HDC Learning

* Encoding

» Uses randomly generated basis
hypervectors to map feature
vectors to hyperdimensional
space

* Implementation is dependent on
the application

* Implementations often include
look-up tables or non-linear
transforms

= Each class is represented as

a hypervector

A GOOD crcocr GAN CHANGE YOUR vt
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HDC Training

Feature
Vector

Label L

Transform input to
hyperdimensional
space

@
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Bundle hypervector

into corresponding

Class 1
|
Class 2
class hypervector
Clafs L %—
Class N
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HDC Inference

Calculate similarity
to all class

Transform input to hypervectors
hyperdimensional —
space
Feature Class 1 3
Vector N5 >
Encoding
Class 2 ! (C::Igcs)gse
& > — with
highest
similarity
Class N ]
» § —
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NeuralHD

* Novel training algorithm

» Updates encoding bases to optimize the encoding
scheme for the desired application

= Based on neural regeneration

= Encoder optimization

= Calculates dimension-wise variance of class
hypervectors

= | owest variance dimensions are zeroed in all classes

» Bases corresponding to the lowest variance dimensions
are regenerated
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Train for an arbitrary
NeuralHD number of iterations
Regenerate corresponding

basis hypervectors / \

p
* Regenerate Bases ..
> Training
N
Calculate variance
-~ \ for each dimension
across classes
> Drop Classes ;
\_ Dimension-wise Variance
Zero-out dimensions in !
class hypervectors To Drop
|dentify which

dimensions to drop
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oncAPI

= Open, multiarchitecture
accelerator framework

= Uses SYCL and C++
= Single-source development

s Offers various libraries with
pre-optimized functions

oneAPlI
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onecAPI Execution

= Command queues

* Host uses queues to send command groups to
accelerator

= parallel_for

» GPUs & CPUs: data-parallel execution of command
group using threads

» FPGAs: autopipelined loop

= single task
= Command group is executed as a single thread
» Mostly used with FPGAs
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oneAPI Memory Management

= Unified Shared Memory (USM)
= Uses pointers
= Explicit data movement: developer specifies when data is moved
» |Implicit data movement: data movement abstracted away
= Buffers and Accessors
= Buffers are wrappers around data
= Accessors are used to access the data in buffers
= Abstracts away data movement
= Pipes
= Only for FPGAs
= Uses on-device FIFOs to pass data between kernels
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HDC Model

* Encoding scheme

Input
Feature
Vector

Calculate dot-product
between input and
each basis
hypervector

2000 hyperdimensions of FP32

B

\ 4

Cosine

Resultant encoded
hypervector
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FPGA Inference Design

Each module calculates
a smaller portion of the

hypervector
Encoding
Module
Producer : Classifier » Consumer
Encoding
\ Module /
Input
Feature 4 N
Vector Inference
CPU
\_ J
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FPGA Single-Pass Training Design
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FPGA
Encoding
Module
Producer Fitting » Consumer
Encoding
\ Module /
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FPGA NeuralHD Design
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FPGA
Encoding o
Module Fitting Regenerate
Trained
\ Classes /
Input
Feature [ Encoded N\
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= yP CPU Variance

s Y

22

UNIVERSITY of



GPU Inference Design

Parallelized by giving
each thread its own
hypervector to infer

/ GPU
/Encoding h /Classifying h
oneMKL : e
GEMM Cosine Classifier
N I /
\ Encoded B /
Input Hypervector
Feature N
Vector Inference
CPU
\ J
BYU
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GPU Single-Pass Training Design

Parallelized by giving
each thread a class

/ GPU
fEncoding \ fFitting \
oneMKL : :
GEMM Cosine Fitter
N I J
\ Encoded B /
Input Hypervector
Feature 4 N Trained
Vectors Classes
CPU
N J
BYU
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GPU NeuralHD Design

—

Trains local classes and
then averages them

Encoding

"

—

GPU

Fitting

R

egenerate

Variance

—>

\_

Input
Feature
Vectors

-

\_

Encoded
Hypervector

CPU

Trained
Classes
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Hardware

« Intel Stratix 10 (PAC D5005)
= 16 GB DDR RAM

» Intel UHD 630
* |ntegrated GPU
= 32 GB DDR RAM

» |ntel Xeon Platinum 8256
= 3.8 GHz

= 4 Cores
= 192 GB DDR RAM

Intel

GRAPHICS

intel)

XEON

PLATINUM
inside”
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Experiment

Benchmark single-pass training, NeuralHD
training, inference latency, and throughput

Used MNIST handwritten digits dataset

= 60000 training images, 1000 test images
= 28x28 monochrome images
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Single-Pass Training

" All models achieved ~89% accuracy

o))
o

N w P
o o o
T

Average Training Time (s)

-
o

LI B

Xeon

2.991

Stratix 10

Nearly 60x speedup

0.894357
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NeuralHD Training

= FPGA and CPU

achieved ~97%
accuracy ool
= GPU achieved 2
~94% accuracy 5
= Notas greatof £
speedup - Nearly 14x
> 00T speedup
compared to z 1 pes
single-pass | 126 552
0

Xeon Stratix 10 UHD
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Inference Throughput |S°Uackioves
highest throughput

FPGA has highest once all threads are
throughput for smaller being used
batch sizes V
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Inference Latency

Slowdown due to lower
thread utilization

3.0F

25}
20F

15F

0.851898

Average Inference Latency (ms)

05F

0.2759

Xeon Stratjx 10 UHD

Just over 3x speedup
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Conclusions

= GPU achieves greatest speedups for throughput,
single-pass training, and NeuralHD training
= All of these tasks demand high throughput

= UHD architecture and GPU HDC implementation has
higher degree of parallelism leading to greater
throughput

= GPU exhibits slowdown for inference latency

= FPGA achieves greatest speedup for inference
latency

= Latency likely able to be improved further through
guantization
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Questions?
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