Multiarchitecture Hardware Acceleration of Hyperdimensional Computing Using oneAPI

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

oneAPI August 2023 DevSummit

August 21, 2023

Dr. Alan George Mickle Chair Professor of ECE University of Pittsburgh

Research Student University of Pittsburgh

Agenda

- What is SHREC?
- Background
- System Overview
- Approach
- Results
- Conclusions

What is SHREC?

Mission-Critical Computing NSF CENTER FOR SPACE, HIGH-PERFORMANCE, AND RESILIENT COMPUTING (SHREC)

- NSF Center for Space, High-Performance, & Resilient Computing
 - Founded in Sep. 2017, replacing highly successful NSF CHREC Center
 - Leading ECE research groups @ four major universities
 - University of Pittsburgh (lead)
 - Brigham Young University (partner)
 - University of Florida (partner)
 - Virginia Tech (partner)
- Under auspices of IUCRC Program at NSF
 - Industry-University Cooperative Research Centers
 - Fostering university, agency, and industry R&D collaborations
 - SHREC is both National Research Center and Consortium
 - University groups serve as research base (faculty, students, staff)
 - Industry & government organizations are research partners, sponsors, collaborators, advisory board, & technology-transfer recipients

Center Mission

CENTER FOR SPACE, HIGH-PERFORMANCE.

D RESILIENT COMPUTING (SHREC

Theme: Mission-Critical Computing

Basic and applied R&D to advance S&T on advanced computing.

Many common challenges, technologies, & benefits, in terms of performance, power, adaptivity, productivity, cost, size, etc.

From architectures to applications to design concepts and tools.

From spacecraft to supercomputers!

BYU University of Pittsburgh BRIGHAM YOUNG VIRGINIA TECH. FLORIDA

NSF Model for IUCRC Centers

Research Interaction

Hyperdimensional Computing

- Researchers observed brains represent and operate on data using randomly assorted neurons
- Hyperdimensional computing (HDC) is a machine learning paradigm that mimics this behavior using very large, randomly generated vectors
- HDC is easily pipelined and/or parallelized making it a good target for hardware acceleration

Hyperdimensional Computing

- Hypervectors
 - Very large vectors
 - Base representation of data in HDC
- "Curse of dimensionality"
 - In high-dimensional spaces, randomly generated vectors are nearly orthogonal
 - Can exploit this by representing semantically different things as different randomly generated vectors

HDC Operations

- Similarity
 - Measures "relatedness" of hypervectors
 - $\delta(A,B) \approx 0$ means A and B are unrelated
 - $\delta(A,B) \gg 0$ means A and B are related
 - Often implemented as cosine similarity $\delta(A, B) = \frac{A \cdot B}{|A||B|}$
- Bundling
 - Combines hypervectors into a hypervector that is similar to the inputs
 - Often implemented as elementwise addition

HDC Operations

- Binding
 - Combines hypervectors to create a hypervector that is dissimilar to the inputs
 - Think of it as a generalized cross product
 - Often implemented as XOR for binary hypervectors
- Permutation
 - Rotates the elements in a hypervector
 - Creates a hypervector that is dissimilar to the inputs
 - Often used to encode positional or temporal data

HDC Learning

- Encoding
 - Uses randomly generated basis hypervectors to map feature vectors to hyperdimensional space
 - Implementation is dependent on the application
 - Implementations often include look-up tables or non-linear transforms
- Each class is represented as a hypervector

HDC Training

HDC Inference Calculate similarity to all class Transform input to hypervectors hyperdimensional space Feature Class 1 Vector δ Encoding Choose Class 2 class δ with highest : similarity **Class N** δ

NeuralHD

- Novel training algorithm
 - Updates encoding bases to optimize the encoding scheme for the desired application
 - Based on neural regeneration
- Encoder optimization
 - Calculates dimension-wise variance of class hypervectors
 - Lowest variance dimensions are zeroed in all classes
 - Bases corresponding to the lowest variance dimensions are regenerated

oneAPI

- Open, multiarchitecture accelerator framework
- Uses SYCL and C++
- Single-source development
- Offers various libraries with pre-optimized functions

oneAPI Execution

- Command queues
 - Host uses queues to send command groups to accelerator
- parallel_for
 - GPUs & CPUs: data-parallel execution of command group using threads
 - FPGAs: autopipelined loop
- single_task
 - Command group is executed as a single thread
 - Mostly used with FPGAs

oneAPI Memory Management

- Unified Shared Memory (USM)
 - Uses pointers
 - Explicit data movement: developer specifies when data is moved
 - Implicit data movement: data movement abstracted away
- Buffers and Accessors
 - Buffers are wrappers around data
 - Accessors are used to access the data in buffers
 - Abstracts away data movement
- Pipes
 - Only for FPGAs
 - Uses on-device FIFOs to pass data between kernels

HDC Model

2000 hyperdimensions of FP32

Encoding scheme

ND RESILIENT COMPUTING (SHREC

VIRGINIA TECH.

FLORIDA

FPGA Single-Pass Training Design

FPGA NeuralHD Design

GPU Inference Design

GPU Single-Pass Training Design

GPU NeuralHD Design

ND RESILIENT COMPUTING (SHREC

VIRGINIA TECH.

FLORIDA

Hardware

- Intel Stratix 10 (PAC D5005)
 - 16 GB DDR RAM
- Intel UHD 630
 - Integrated GPU
 - 32 GB DDR RAM
- Intel Xeon Platinum 8256
 - 3.8 GHz
 - 4 Cores
 - 192 GB DDR RAM

Experiment

- Benchmark single-pass training, NeuralHD training, inference latency, and throughput
- Used MNIST handwritten digits dataset
 - 60000 training images, 1000 test images
 - 28x28 monochrome images

Single-Pass Training

All models achieved ~89% accuracy

NeuralHD Training

- FPGA and CPU achieved ~97% accuracy
- GPU achieved
 ~94% accuracy
- Not as great of speedup compared to single-pass

Conclusions

- GPU achieves greatest speedups for throughput, single-pass training, and NeuralHD training
 - All of these tasks demand high throughput
 - UHD architecture and GPU HDC implementation has higher degree of parallelism leading to greater throughput
- GPU exhibits slowdown for inference latency
- FPGA achieves greatest speedup for inference latency
 - Latency likely able to be improved further through quantization

