intel

Al DevSummit Workshop

Building Al Super Reference Kits

Presenters: Eduardo Alvarez, Rachel Oberman, and Paula Ramos

In this workshop:

- Learn about using Intel AI Reference Kits to prototype AI Solutions for real-world applications
- We will walk through the "Pharmaceutical Manufacturing Business" Super Kit codebase
- Participants will learn about the Intel optimizations in each component through a live hands-on pair programming session.
- Learn how each application is modularized to support an API endpoint
- The various application components will be deployed using DevOps tools like Docker and Docker Compose

What are Al Reference Kits?

Predictive Asset Analytics	Intelligent Document Indexing	Visual Quality Inspection	Customer Care Chatbot	Digital Twin	Medical Imaging Diagnosis	Disease Prediction
Fraud detection in credit card transactions	Claim Document Automation	Purchase Prediction	Customer Segmentati on	Network Intrusion Detection	Default Risk Prediction	Order to delivery Forecasting
Al Transcribe for Therapists	Demand Forecasting	Product Recommend ations	Customer Churn Prediction	Power Line Fault Detection	Historical Assets Document Processing	Invoice-to- Cash Automation
Drone Navigation Segmentati on	Traffic Camera object detection	Al Synthetic Data (Structured)	Vertical Search Engine	Disaster appraisal process	Aerodynami cs/Fluid Flow Profiling	loT (Data Streaming Anomality Detection)
Al Synthetic Data (Unstructur ed – Text)	Al Synthetic Data (Unstructur ed – Image)	Al Synthetic Data (Unstructur ed – Voice)	Data Protection	Engineering Design	Visual Process Discovery	

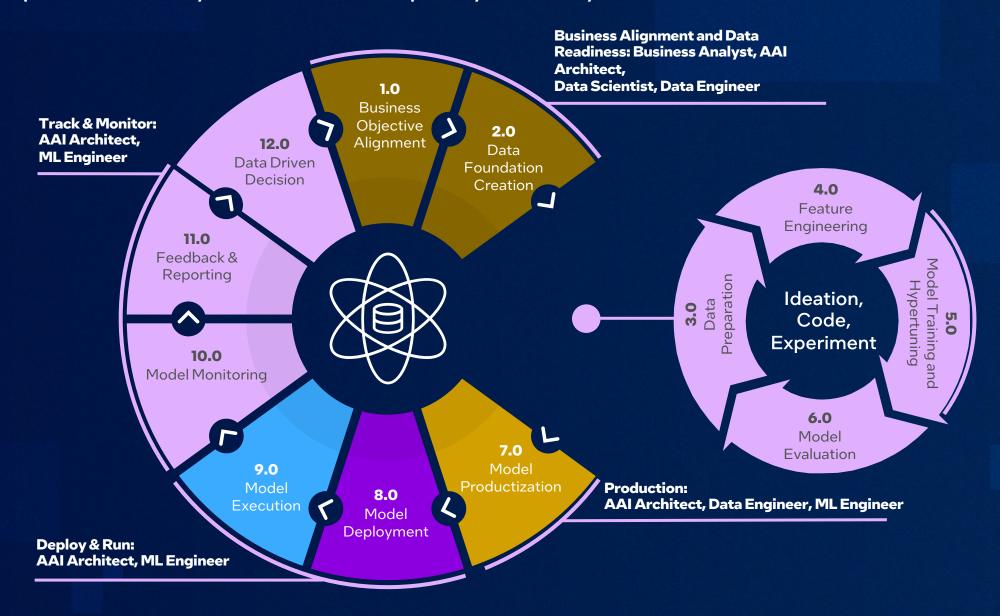
In collaboration with Accenture*, Intel offers a series of downloadable AI reference kits to the open-source community to help enterprises accelerate their digital transformation journey. These kits are built upon the AI application tools that Intel provides to data scientists and developers.

https://www.intel.com/content/www/us/e n/developer/topic-technology/artificialintelligence/reference-kit-library.html

So, what is an Al Super Reference Kit?

An Al Super Reference Kit is born when we combine multiple kits for use in a particular vertical, domain, or use case. By innovating various components of a legacy process, Al Super Kits can have meaningful impacts across a business in a synergistic way.

- Quickly prototype unified AI solutions with multiple reference kits
- Leverage sample architecture to plan for scale with essential DevOps tools
- Build with pre-baked Intel AI optimizations

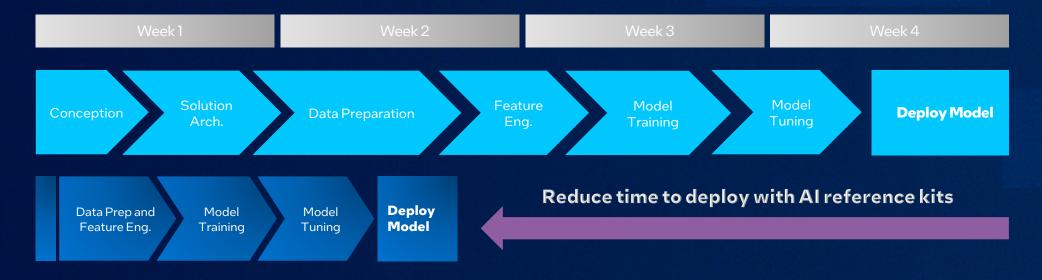


Construct a Super Kit that uses customer churn prediction, demand forecasting, and delivery forecasting to automate/optimize customer analysis for a business.

How do Al Super Reference Kits help developers?

Understanding Value to Developers

Development Cycles to Deploy Al Systems



intol

accenture intel

intel Al DevSummit Workshop

Model Life Cycle Acceleration for Developers

- Fully functional Git repository
- Assuming around 2 days to build code from scratch
- With the ref kit clone, fully functional code will be available in about 2 hours
- Data processing: up to **2X** faster*
- Initial model training: up to 25X faster*
- Faster model development or more training cycles
- Hyperparameter tuning up to **24%** faster*
- Reduction of model footprint by 75%*

* numbers are subjective and extracted from various Accenture benchmarks. These numbers depend on the accuracy target, framework, algorithm dataset, compute architecture, etc.

Hardware and Software Ecosystem Acceleration Opportunities

Hardware Acceleration

Achieve higher performance & throughput, lower latency and enable AI Inference at edge.

CPU

HPU

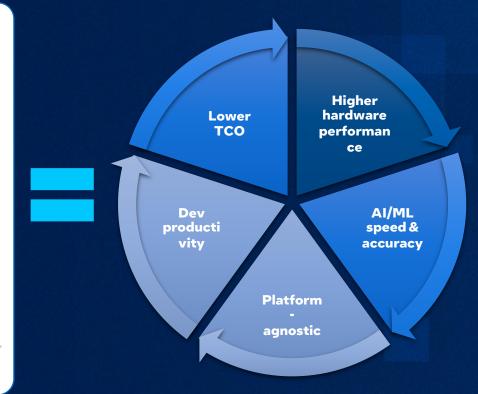
GPU

VPU

FPGA

Software Optimization

Optimize data processing and ML/DL workloads across multiple hardware architectures.



Pharmaceuticals Manufacturing Business The First Al Super Reference Kit

Pharmaceuticals Manufacturing Business "Super Kit"

Demand Forecasting

The demand forecasting component uses a time series prediction CNN-LSTM model to predict the demand for multiple products across multiple locations. It leverages the Intel® Extensions for TensorFlow on Intel® 4th Generation Xeon® Scalable processors.

Frontend

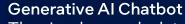
Predictive Asset Maintenance

The demand predictive asset maintenance component uses an XGBoost classifier to flag assets that need maintenance. It leverages the Intel® Extension for Scikit-Learn, XGBoost, and daal4py on Intel® 4th Generation Xeon® Scalable processors.

DevOps

Al Tools and Libraries

Visual Anomaly Detection


The generative AI chatbot component uses a GPT4all-J LLM and Retrieval Augmented Generation (RAG) to respond to queries associated with fictitious robotic maintenance scenarios. It leverages the PyTorch 2.0, LangChain, and Hugging Face Transformers on Intel® 4th Generation Xeon® Scalable processors.

Platform

Hardware

The visual anomaly detection component uses a binary classification computer vision model based on VGG-16 or Padim to produce a flag if the product passes or fails visual inspection. It leverages the OpenVINO, Anomalib, Intel® Extension for PyTorch, and Hugging Face Transformers on Intel® 4th Generation Xeon® Scalable processors OR Intel ARC GPUs.

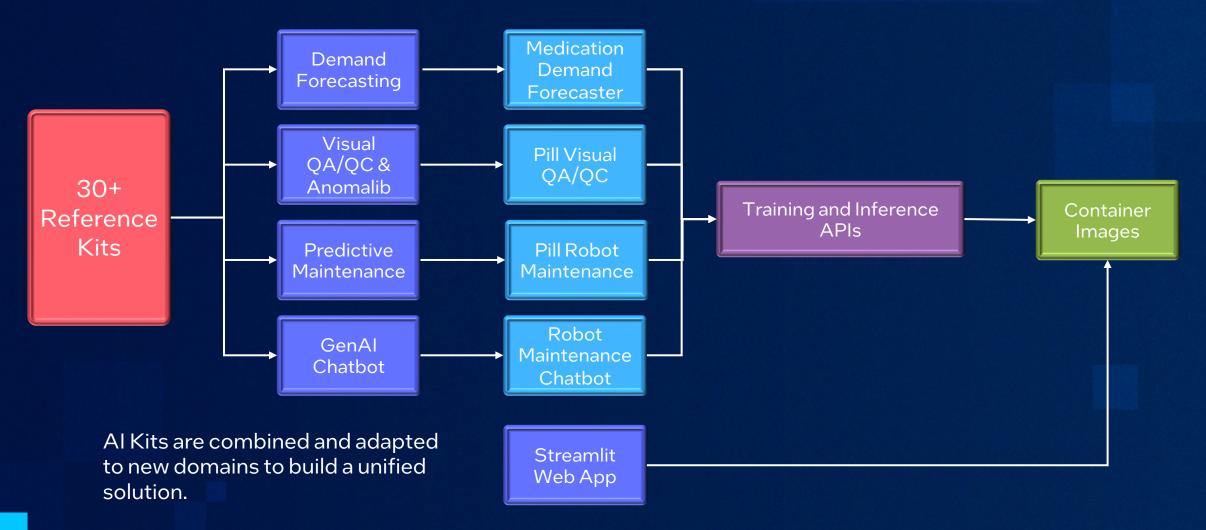
Modernizing Manufacturing Business Processes

Predictive maintenance Customer Support

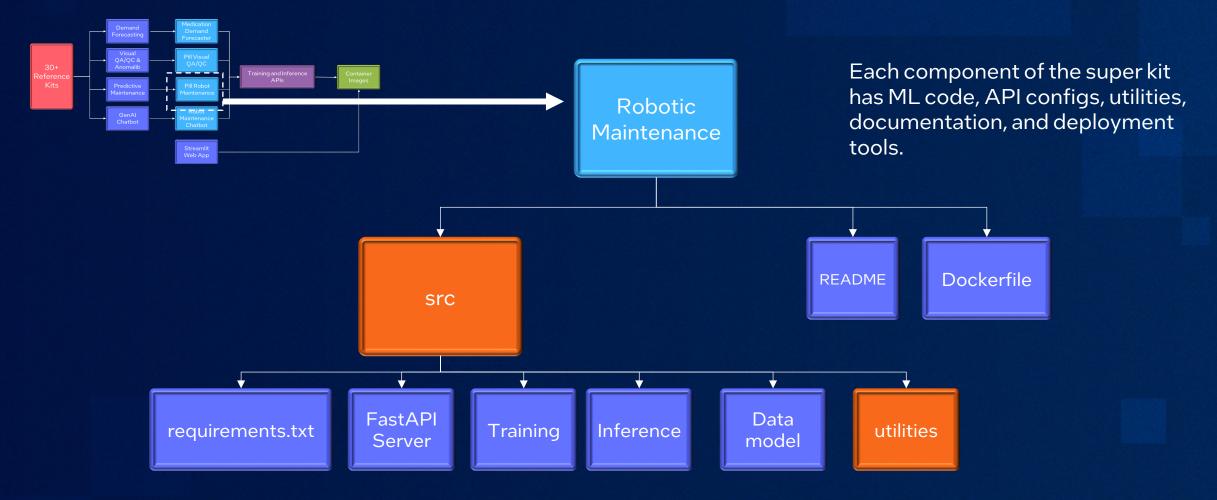
Check equipment

Service the Production Line

Customer Support


Visual QA/QC

Machine learning
- Tensorflow


Machine learning – XGBoost, Scikit-Learn*, daal4py

Generative AI – Q&A Chatbot w/ Retrieval Augmented Generation Anomalib and Intel® Extension for PyTorch* Computer Vision

Super Al Reference Kit Adaption Flow – Pharmaceutical Manufacturing Business Example

Example Package Architecture Diagram

Begin Workshop

Workshop Steps

- 1. User access for Intel Developer Cloud
- 2. Provision a Tiny VM
- 3. Connect to Tiny VM Using VSCode
- 4. Clone the Super Kit Repository (15 min)
- 5. Start a high-level code overview
- 6. Demand Forecast Deep Dive and Package Layout Reinforcement
- 7. Deployment Mechanics
- 8. Optimizations and Overview of Robotics Maintenance, Visual QA/QC, and Chatbot Components
- 9. Once Launched, go into UI and train/inference with Demand Forecast + Robotics Maintenance
- 10. Recap of the Learnings

15

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

In Closing

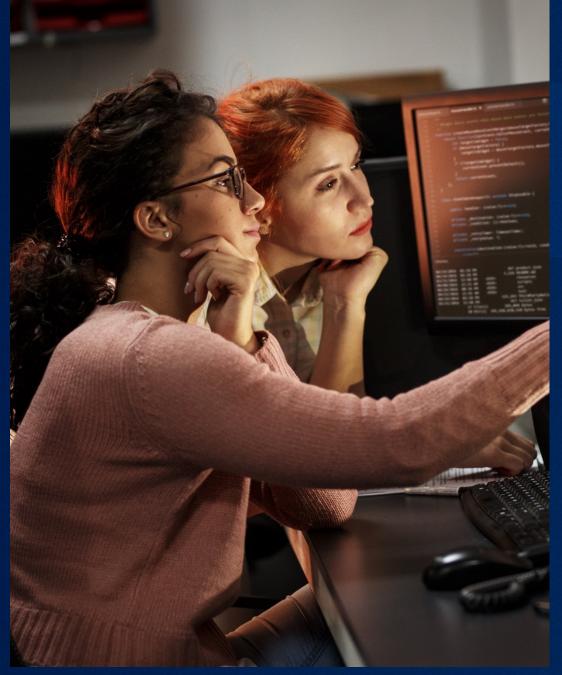
- We have learned how AI Super Reference Kits provide:
 - Quickly prototype unified AI solutions with multiple reference kits
 - Leverage sample architecture to plan for scale with essential DevOps tools
 - Build with pre-baked intel AI optimizations
- We reviewed the "Pharmaceutical Manufacturing Business" Super Kit codebase and developed an understanding of how the architectural elements of the application

In Closing (continued)

- Implementation overview of Intel AI Optimizations:
 - Intel® Optimizations for Tensorflow*
 - Intel® Extension for Scikit-Learn*
 - Intel® Optimizations for XGBoost
 - Intel® oneAPI Data Analytics Library (oneDAL) for Python* API aka daal4py
 - OpenVINO: Anomalib
 - Intel® Extension for PyTorch*
 - PyTorch 2.0 Upstreamed Intel Optimizations
- Learn how each application is modularized to support an API endpoint
- The various application components will be deployed using DevOps tools like Docker and Docker Compose

Call to Action

Al Reference Kit Main Page



Download the Al Super Reference Kit

Download Intel AI Reference Toolkits for free

Q&A

#