
Preparing NAMD for the 
Aurora Supercomputer

1

David J. Hardy, University Of Illinois at Urbana-Champaign
Ke Yue, Intel Corporation
Wei Jiang, Argonne National Laboratory



Molecular Dynamics Combats 
Diseases Like COVID-19

• Molecular dynamics (MD) simulation software and HPC 
resources provide access to spatial and temporal scales 
not available to physical experiments

• Atomistic dynamics can reveal the molecular basis for 
diseases

• By studying viruses and other diseases with MD and 
related methods, researchers can inform the development 
of new treatments and therapies

2

Delta variant of coronavirus (SARS-CoV-2) in aerosol droplet.
Credit: A. Dommer, L. Casalino, F. Kearns, R. Amaro (UCSD).
Simulations (1B atoms) with NAMD, renderings with VMD.



NAMD Simulating SARS-CoV-2 on Frontera and Summit

3

(A) Virion, (B) Spike, (C) Glycan shield conformations Scaling performance:
• ~305M atom virion
• ~8.5M atom spike

Collaboration with Amaro Lab at UCSD, images rendered by VMD
Winner of Gordon Bell Special Prize at SC20, project involved overall 1.13 Zettaflops of NAMD simulation 

strong scaling 
51% efficiency

Casalino, et al. bioRxiv (2020) https://doi.org/10.1101/2020.11.19.390187

https://doi.org/10.1101/2020.11.19.390187


NAMD: Scalable Molecular Dynamics

4

• Code written in C++ with 
Charm++ parallel objects
- CUDA for NVIDIA devices
- HIP (via Hipify) for AMD devices
- oneAPI SYCL for all devices

• Simulate movements of 
biomolecules over time

• Enable parallel scaling
- Large systems (single-copy scaling)
- Enhanced sampling (multi-copy scaling)

• Over 25,000 registered users,
over 16,000 citations Investigations of coronavirus (SARS-CoV-2) spike dynamics.

Credit: Tianle Chen, Karanpal Kapoor, Emad Tajkhorshid (UIUC).
Simulations with NAMD, movie created with VMD.https://www.ks.uiuc.edu/Research/namd/

Phillips, et al. J. Comput. Chem. 26, 1781-1802 (2005)
Phillips, et al. J. Chem. Phys. 153, 044130 (2020)

https://www.ks.uiuc.edu/Research/namd/


SERCA PGP

Early Science on Aurora: 
NAMD Free Energy Calculations 

• Understand the function of large 
membrane transporters:
- Calcium ATPase (SERCA) pump
- P-glycoprotein (PGP) multidrug-resistance transporter

• Benefits to human health:
- Both proteins use ATP hydrolysis as an energy source
- Knowledge relating to multidrug resistance in cancer 

• Free energy calculations involve thousands 
of weakly coupled "replicas" to cover 
thermodynamic reaction path
- 20K-30K atom systems, one per GPU
- Simulate using GPU-resident version of NAMD 



6

Molecular Dynamics Simulation

Integrate Newton’s equations of motion:

Most computationally intensive part

Integrate for millions of time steps



Parallelism for MD Simulation Limited to Each Time Step

7

Computational workflow of MD:

initialize particle
positions

particle
forces

force
calculation

about 99% of 
computational work

update
positions

about 1% of 
computational work

reduced quantities (energy, temperature, pressure)
position coordinates (trajectory snapshot)

occasional
output

aLoop millions
of time steps



NAMD Parallelizes Domain and Interaction Space

• Decompose atoms into equal volume patches

• Calculate pairwise forces between atoms, treat as 
interactions between neighboring patches

• Decompose patch-patch interaction compute objects

• Moving atoms: update spatial decomposition by 
migrating atoms between adjacent patches

• Load balancing: update work decomposition by 
migrating compute objects to keep processors 
consistently occupied

8

Spatial decomposition of 
atoms into patches

Work decomposition of 
patch-patch interactions

into migratable compute objects



NAMD Parallel Workflow Incorporates GPUs

9

Charge spreading

Force interpolation

Offload force compute to GPU

Must aggregate positions

Patches

Patches

Compute forces
for next time step



Multi-Node NAMD Uses GPU-Offload Scheme
Partition work between CPU and GPU

10

force
calculation 

on GPUs

update
coordinates 

on CPUs

Short-range non-bonded forces (90%)

Long-range PME electrostatics (5%)

Bonded forces (2%)

Corrections for excluded interactions (2%)

Integrator, rigid bond constraints (1%)
Enhanced sampling methods: additional forces, grid potentials, collective variables

Showing approximate percentage of total work per step:



New GPU-Resident Scheme Doubles GPU Performance
Move integrator to GPU and maintain data between time steps

11

Calculate forces

Integrate atom 
positions

Aggregate 
position data, 
copy to GPU

Integrate atom 
positions

Calculate forces

Aggregate 
position data, 
copy to GPU

Stream 
forces back 

to CPU

CPU

GPU

GPU-offload

CPU

GPU

Integrate atom 
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force 
to SOA form

Integrate atom 
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force 
to SOA form

Integrate atom 
positions

GPU-resident
(manages GPU kernels)



Improve NAMD Code Longevity by Adopting SYCL

• Support upcoming exascale computers: ANL Aurora (Intel)

• SYCL provides advantages:
- Modern C++ interface to GPU devices

- Host-side code is much simpler than OpenCL

- Same data structure definitions for both host and device

- Single source and single compiler for host and device code

- Vendor-neutral open standards language and library solution 

12



How does SYCL differ from CUDA?

• Use of modern C++
- Kernels defined as unnamed lambda expressions

- Error-handling with try–catch block

• Design decisions in SYCL and OpenCL
- SYCL work queue is analogous to CUDA stream, but defaults to out-of-order execution

- Must specify accessor functions to enable SYCL kernels to access device buffers

- Permit flexible vector width for performance portability across different hardware

13



Design Decisions for Porting NAMD

• Extend NAMD without disrupting current GPU support
- Use preprocessor switches to isolate SYCL/DPC++ extensions from existing code

• Leverage existing GPU kernels and data structures
- Translate CUDA kernels to SYCL and copy supporting data structures and kernel management 

infrastructure into SYCL/DPC++ versions

• Add support incrementally, guided by Amdahl's Law, to accelerate most 
computationally expensive parts first
- Begin by porting short-range non-bonded force kernels

- Continue with particle-mesh Ewald (PME) and bonded force kernels

14

Mirrors order of original 
CUDA development



NAMD Has a LOT of CUDA Code
• Eventually develop SYCL support for everything, including GPU-resident version

• Start porting from stable code base with GPU-offload (version 2.14)

15

Component # of C/h files # of cu files # of kernels src line count

Non-bonded force 6 2 20 5.8k

Bonded force 3 1 2 3.9k

PME - single node 6 1 5 4.1k

PME - scalable 6 1 3 3.3k

Utilities 8 1 1 1.7k

Total 29 6 31 18.8k



Overall Porting Strategy
• We employed a divide-and-conquer strategy, using preprocessor switches to decouple 

components in the CUDA code
- Significantly reduces development and debugging complexity

• Separated components
- Short-range non-bonded force & device utilities

- Bonded force

- PME (Particle-Mesh Ewald) — requires FFT

• Utilized supplemental libraries from oneAPI
- oneDPL for C++17 parallel STL reduce, shuffle, atomic_ref, sort and scan replaces CUB library

- oneMKL FFT replaces cuFFT library

16



Faster Porting with Code Conversion Tool

• Utilized SYCLomatic Migration Tool for faster development

• Started with converting the CUDA implementation
- Saves > 80% of code porting effort

- For example, threadIdx.x → ndItem.get_local_id(2)

• Provides a good guide to practice SYCL syntax

17



Validating SYCL Port of GPU-Offload Kernels

• Maximum relative error in 
total energy for 500-step 
constant energy simulation

• CPU-only run shows lower 
error due to double 
precision compared to 
mixed-precision GPU runs

18

architecture ApoA1 (92K atoms) STMV (1M atoms)

CPU-only (2nd run) 4.35841E-08 3.95857E-07

A5000 (CUDA) 3.17476E-06 4.97212E-06

CPU (DPC++) 2.89769E-06 3.29257E-06

Gen9 (DPC++) 2.82174E-06 3.84310E-06

ATS/Xe-HP (DPC++) 2.09291E-06 3.39862E-06



NAMD 2.x Performance Improvements on
Intel Max Series GPU

• Non-bonded force + PME offload
• Based on improvements from

• Firmware, driver, oneAPI, SYCL optimizations

• NAMD used heavily for hardening of Intel oneAPI
and other software components
• oneAPI, Intel VTune, etc.

Configuration: 2-socket 3rd generation Intel Xeon® Scalable processor (code named 
Icelake) 8360Y, Intel Max Series GPU



Intel VTune™ Profile of NAMD on Intel MAX Series GPU

Before Optimization
After Optimization

After Optimization

9.1s

4.4s

Configuration: 1-socket 3rd generation Intel Xeon® Scalable processor (code named Icelake) 
8360Y/32 NAMD host threads; GPU Stack 0 of Intel Max Series GPU; Non-Bonded Force 
offload; 100 steps

2x reduction in NBF GPU execution time

Simulating STMV (1M-atom benchmark system)



Before Optimization

After Optimization

1st NBF kernel 
running

7 kernels submitted
to command queue 

1 kernel submitted to 
command queue

190ms

6ms

Configuration: 1-socket 3rd generation Intel Xeon® Scalable processor (code named Icelake) 
8360Y/32 NAMD host threads; GPU Stack 0 of Intel Max Series GPU; Non-Bonded Force 
offload; 100 steps

Improved SYCL kernel submission efficiency

Intel VTune™ Profile of NAMD on Intel MAX Series GPU
Simulating STMV (1M-atom benchmark system)



Conclusions and Future Work

• Experience shows that Intel oneAPI tools are usable and capable

• Demonstrates SYCL porting for large complicated codebase

• Continue to improve NAMD performance

- Improve SYCL kernel performance and further reduce synchronization latencies

- Work on multi-node scaling as nodes of Aurora become available

• Port GPU-resident version of NAMD
- Makes use of GPU-offload force compute kernels

22



23

Acknowledgments
• SYCL porting credits: Tareq Malas (formerly Intel), Jaemin Choi (formerly UIUC), 

Mike Brown (Intel)

• ANL Aurora Early Science Program of the Argonne Leadership Computing Facility

• Intel funding through UIUC oneAPI Center of Excellence

• NIH Grant P41-GM104601

NIH Center for Macromolecular 
Modeling and Bioinformatics

Beckman Institute, University of Illinois 
at Urbana-Champaign


