
oneAPI Industry Initiative & Intel®
oneAPI Tools

蔺杰 (Auber Lin)

SATG/DSE/DTCE/APCAP/PRC Customer Engineering Team

Nov. 2023

Multiarchitecture Programming for Accelerated Compute
Freedom of Choice for Hardware

All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

2

Agenda

▪ oneAPI Goal

▪ Intel oneAPI product - Toolkits

3

oneAPI Goal

4

Modern Applications Demand Increased Processing

1. Evans Data Global Development Survey Report 22.1, June 2022

Diverse accelerators needed to meet today’s performance requirements:

48% of developers target heterogeneous systems

that use more than one kind of processor or core1

CPU GPU FPGA

Developer Challenges: Multiple Architectures, Vendors, and Programming Models

Other Accelerators

Open, Standards-based, Multiarchitecture Programming

5

Offload v.s. Heterogenous Computing

Where are Tasks running?

On a CPU

On an Accelerator

CPU only

Offload

Heterogeneous
Computing

▪ Offload

 The CPU moves work to an accelerator and waits for the answer

6

异构计算软件生态现状

Domain
Example

Workloads
Software Ecosystem

AI

DL
• Training

• Inference

High level frameworks targeting

proprietary interfaces

ML
• SVM

• k-means
No established standards

Big Data
• Data mining

• Analytics
Distributed computing on Xeon

HPC
• Simulation

• Modeling
CUDA based GPU support

Visual
• Video

• Transcode
Well-established industry standards

• Domain Specific Languages

• Modular, pluggable

• One size does not fit all

• Sparse and unstructured

• Distributed

.
*Other names and brands may be claimed as the property of others. SYCL is a trademark of the Khronos Group Inc.

7

Middleware & Frameworks

Application Workloads Need Diverse HardwareoneAPI Industry Initiative
Break the Chains of Proprietary Lock-in

Direct Programming

Low-Level Hardware Interface (oneAPI Level Zero)

SYCL (C++)

oneAPI Industry Specification

The productive, smart path to freedom for accelerated
computing from the economic and technical burdens of
proprietary programming models

Visit oneapi.com for more details

CPU GPU FPGA

...

Freedom to Make Your Best Choice

▪ C++ programming model for multiple architectures and vendors

▪ Cross-architecture code reuse for freedom from vendor lock-in

Realize all the Hardware Value

▪ Performance across CPU, GPUs, FPGAs, and other accelerators

▪ Expose and exploit cutting-edge features of the latest hardware

Develop & Deploy Software with Peace of Mind

▪ Open industry standards provide a safe, clear path to the future

▪ Interoperable with familiar languages and programming models
including Fortran, Python, OpenMP, and MPI

▪ Powerful libraries for acceleration of domain-specific functions

API-Based Programming

Math Threading Parallel STL

Analytics/
ML

DNN ML Comm

Video
Processing

Image
Processing

Signal
Processing

Ray Tracing

Volumetric
Rendering

Image
Denoise

Other
Accelerators

oneapi.com

8

▪ Advanced compilers, libraries, and analysis,
debug, and porting tools

▪ Full support for C, C++ with SYCL, Python,
Fortran, MPI, OpenMP

▪ Intel® Advisor determines device target mix
before you write your code

▪ Intel's compilers optimize code to take full
advantage of multiarchitecture workload
distribution.

▪ Intel® VTune™ Profiler analyzes hotspots to
optimize code performance

▪ Intel AI tools support acceleration of major deep
learning and machine learning frameworks

Intel® Developer Tools Supporting oneAPI
A complete set of proven tools expanded from CPU to accelerators

Low-Level Hardware Interface (oneAPI Level Zero)

Middleware & Frameworks Powered by oneAPI

SYCL (C++)

Python

Fortran

OpenMP

Languages Libraries Tools

AI/ML
Math

Media

Rendering
& Ray

Tracing

Parallelism

GPU Code
Migration

Performance

Debug

CPU GPU FPGA Others

9

Accelerating Choice with SYCL*
Khronos Group Standard

▪ Open, standards-based

▪ Multiarchitecture performance

▪ Freedom from vendor lock-in

▪ Comparable performance to native CUDA on
Nvidia GPUs

▪ Extension of widely used C++ language

▪ Speed code migration via open source
SYCLomatic or Intel® DPC++ Compatibility Tool

Architectures Intel | Nvidia | AMD CPU/GPU | RISC-V | ARM Mali | PowerVR | Xilinx

Testing Date: Performance results are based on testing by Intel as of April 15, 2023 and may not reflect all publicly available updates.
Configuration Details and Workload Setup: Intel® Xeon® Platinum 8360Y CPU @ 2.4GHz, 2 socket, Hyper Thread On, Turbo On, 256GB Hynix DDR4-3200, ucode 0xd000363. GPU: Nvidia A100 PCIe 80GB GPU memory. Software: SYCL open
source/CLANG 17.0.0, CUDA SDK 12.0 with NVIDIA-NVCC 12.0.76, cuMath 12.0, cuDNN 12.0, Ubuntu 22.04.1. SYCL open source/CLANG compiler switches: -fscycl-targets=nvptx64-nvidia-cuda, NVIDIA NVCC compiler switches: -O3 –gencode
arch=compute_80, code=sm_80. Represented workloads with Intel optimizations.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.
Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.
SYCL is a trademark of the Khronos Group Inc.

https://github.com/oneapi-src/SYCLomatic
http://www.intel.com/PerformanceIndex

10

SYCLomatic: CUDA* to SYCL* Migration Made Easy
Choose where to run your software, don’t let the software choose for you.

Open source SYCLomatic tool assists developers
migrating code written in CUDA to C++ with SYCL,
generating human readable code wherever possible

~90-95% of code typically migrates automatically1

Inline comments are provided to help developers
finish porting the application

Intel® DPC++ Compatibility Tool is Intel’s
implementation, available in the Intel® oneAPI Base
Toolkit

1Intel estimates as of March 2023. Based on measurements on a set of 85 HPC benchmarks and samples, with examples like Rodinia, SHOC, PENNANT. Results may vary.
*Other names and brands may be claimed as the property of others. SYCL is a trademark of the Khronos Group Inc.

github.com/oneapi-
src/SYCLomatic

github.com/oneapi-src/SYCLomatic

11

Codeplay oneAPI Plug-ins for Nvidia* & AMD*
Support for Nvidia & AMD GPUs to Intel® oneAPI Base Toolkit

• Available through Intel, Codeplay & our channel

• Requires Intel Priority Support for Intel® oneAPI
DPC++/C++ Compiler

• Intel takes first call, Codeplay delivers backend
support

• Codeplay provides access to older plug-in versions

oneAPI for NVIDIA & AMD GPUs

Priority Support

• Free download of binary plugins to Intel® oneAPI
DPC++/C++ Compiler:

• Nvidia GPU

• AMD beta GPU

• No need to build from source!

• Plug-ins updated quarterly in-sync with oneAPI tools

Nvidia GPU plug-in AMD GPU plug-in

Codeplay blog Codeplay press release

Image courtesy of Codeplay Software Ltd.

*Other names and brands may be claimed as the property of others.

Intel®

oneAPI for NVIDIA & AMD GPUs

▪ Free download of binary plugins to Intel® oneAPI
DPC++/C++ Compiler:

▪ Nvidia GPU
▪ AMD beta GPU
▪ No need to build from source!
▪ Plug-ins updated quarterly in-sync with SYCL 2020

conformance & performance

Priority Support

▪ Available through Intel, Codeplay & our channel
▪ Requires Intel Priority Support for Intel® oneAPI

DPC++/C++ Compiler
▪ Intel takes first call, Codeplay delivers backend

support
▪ Codeplay provides access to older plug-in versions

http://developer.codeplay.com/products/oneapi/nvidia/
http://developer.codeplay.com/products/oneapi/amd/
https://codeplay.com/portal/blogs/2022/12/16/bringing-nvidia-and-amd-support-to-oneapi.html
Codeplay®%20announces%20oneAPI%20for%20Nvidia®%20and%20AMD%20GPU%20hardware%20-%20Codeplay%20Software%20Ltd

12

oneAPI Libraries

Domain Name Description
Open
Spec

Open
Source

Parallel Programming
oneDPL Data Parallel C++ Library including Parallel STL Yes Yes

oneTBB Threading Building Blocks Yes Yes

AI & ML

oneDNN Deep Neural Networks Yes Yes

oneCCL Collective Communications Yes Yes

oneDAL Data Analytics and Machine learning Yes Yes

Math oneMKL
Math Kernels: linear algebra, FFT, random numger
generation

Yes Partial

Video oneVPL Video Processing: encode, decode, transcode Yes Yes

Ray Tracing
Embree, VKL,
OID, OSPRay

Geometric & Volumetric Ray Tracing, Image Denoise,
Scalable Rendering

Yes Yes

13

oneAPI Industry Momentum

ISVs & OSVs

End Users

OEMs & SIs

National Labs

Universities & Research Institutes CSPs & Frameworks

University
College
London

Indian
Institute of
Science
Bangalore

Indian Institute
of Science
Education &
Research Pune

Indian Institutes
of Technology
Delhi /
Kharagpur /
Roorkee

Oak Ridge National
Laboratory

GeoEast

Verizon

These organizations support the oneAPI initiative for a single, unified programming model for cross-architecture development.
It does not indicate any agreement to purchase or use of Intel’s products. *Other names and brands may be claimed as the property of others.

WeBank

14

oneAPI Commercial & Community Support Available

Every paid version of Intel® oneAPI Developer Toolkits
includes Priority Support for that toolkit (Intel oneAPI Base,
HPC, IOT, & Rendering Toolkits)

▪ Direct, private interaction with Intel software support engineers
▪ Accelerated response time
▪ Access to—and support for—previous Intel products such as

Fortran compiler versions, previous toolkit versions, and more
▪ Intel Technical Consulting Engineers for on-site or online

training and consultation at a reduced cost

Priority Support for Intel® oneAPI Toolkits

▪ Support via the Intel public Community Forum

▪ Access to only the latest versions of oneAPI Toolkits

▪ Access to online tutorials and self-help forums

Free Community Support

15

HPC & Data Center AI & Visualization

Maximize Your Performance
With Intel Developer Tools & Hardware Platforms

Embedded Systems & IoT

Open alternative to proprietary lock-in

Enables easy architecture retargeting

Code longevity for future hardware

Optimize compute performance on the
latest Intel CPUs, GPUs and FPGAs

Maximize built-in accelerators

Accelerate across AI frameworks

Familiar languages and standards

Easily integrate w/ legacy code

Easily migrate CUDA to SYCL

Minimize code re-writes

Performance Productivity Freedom

16

Details about Intel® oneAPI Toolkits
Intel® oneAPI Base Toolkit

Intel® oneAPI HPC Toolkit

17

API-Based ProgrammingDirect Programming Analysis & debug Tools

Intel® oneAPI Base Toolkit

Intel® oneAPI DPC++ Library
oneDPL

Intel® oneAPI DPC++/C++
Compiler

Intel® VTune™ Profiler

Intel® oneAPI Math Kernel
Library - oneMKL

Intel® DPC++ Compatibility Tool Intel® Advisor

Intel® oneAPI Data Analytics
Library - oneDAL

Intel® Distribution for Python Intel® Distribution for GDB

Intel® oneAPI Threading
Building Blocks - oneTBB

Intel® FPGA Add-on
for oneAPI Base Toolkit

Intel® oneAPI Collective
Communications Library

oneCCL

Intel® oneAPI Deep Neural
Network Library - oneDNN

Intel® Integrated Performance
Primitives - Intel® IPP

Intel® oneAPI
Base Toolkit
Accelerate Data-centric Workloads

A core set of core tools and libraries for developing

high-performance applications on Intel® CPUs,

GPUs, and FPGAs.

Who Uses It?

▪ A broad range of developers across industries

▪ Add-on toolkit users since this is the base for all toolkits

Top Features/Benefits

▪ Data Parallel C++ compiler, library and analysis tools

▪ SYCLomatic / DPC++ Compatibility tool helps migrate
CUDA code to C++ with SYCL

▪ Python distribution includes accelerated scikit-learn,
NumPy, SciPy libraries

▪ Optimized performance libraries for threading, math, data
analytics, deep learning, and video/image/signal
processing

Learn More & Download

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.iicfss

18

oneAPI DPC++/C++ Compiler and Runtime

Productive and Performant
SYCL Compiler
Intel®oneAPI DPC++/C++ Compiler

Uncompromised parallel programming productivity
and performance across CPUs and accelerators

▪ Allows code reuse across hardware targets, while permitting
custom tuning for a specific accelerator

▪ Open, cross-industry alternative to single architecture proprietary
language

Khronos SYCL Standard

▪ Delivers C++ productivity benefits, using common and familiar C
and C++ constructs

▪ Created by Khronos Group to support data parallelism and
heterogeneous programming

Builds upon Intel’s decades of experience in
architecture and high-performance compilers

There will still be a need to tune for each architecture.

C++ with SYCL Source Code

Clang/LLVM

SYCL Runtime

CPU GPU FPGA

Learn More & Download

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

19

Design Debug Tune

▪ Efficiently offload code to GPUs

▪ Optimize your CPU/GPU code for
memory and compute

▪ Enable more vector parallelism and
improve efficiency

▪ Add effective threading to unthreaded
applications

▪ Multiple accelerator support with CPU,
GPU and FPGA

▪ Enables deep, system-wide debug of
SYCL, C, C++, OpenMP and Fortran
cross-architecture applications

▪ IDE Integration into Microsoft Visual
Studio, VS Code and Eclipse

▪ Tune for GPU, CPU, and FPGA

▪ Optimize offload performance

▪ Supports SYCL, C, C++, Fortran,
Python, Go, Java or a mix of languages

Intel® Advisor Intel® Distribution for GDB Intel® VTune™ Profiler

Analysis & Debug Tools
Get More from Diverse Hardware

20

Intel oneAPI Tools for HPC
Intel® oneAPI Tools for HPC

Intel® oneAPI
HPC Toolkit
Deliver Fast Applications that Scale

What is it?

A toolkit that adds to the Intel® oneAPI Base Toolkit for
building high-performance, scalable parallel code on C++,
Fortran, SYCL, OpenMP & MPI from enterprise to cloud,
and HPC to AI applications.

Who needs this product?

▪ OEMs/ISVs

▪ C++, Fortran, OpenMP, MPI Developers

Why is this important?

▪ Accelerate performance on Intel® Xeon® & Core™
processors & Intel accelerators

▪ Deliver fast, scalable, reliable parallel code with less
effort built on industry standards

Back to Domain-specific Toolkits for Specialized Workloads

API-Based ProgrammingDirect Programming Analysis & debug Tools

Intel® oneAPI Base & HPC Toolkits

Intel® oneAPI HPC Toolkit +

Intel® oneAPI Base Toolkit

Intel® MPI LibraryIntel® C++ Compiler Classic Intel® Inspector

Intel® oneAPI DPC++ Library
oneDPL

Intel® Fortran Compiler

Intel® Trace Analyzer
& Collector

Intel® oneAPI Math Kernel
Library - oneMKL

Intel® oneAPI DPC++/C++
Compiler?

Intel® oneAPI Data Analytics
Library - oneDAL

Intel® DPC++ Compatibility Tool
Intel® oneAPI Threading

Building Blocks - oneTBB

Intel® oneAPI Collective
Communications Library

oneCCL

Intel® oneAPI Deep Neural
Network Library - oneDNN

Intel® Distribution for Python

Intel® FPGA Add-on
for oneAPI Base Toolkit

Intel® Integrated Performance
Primitives – Intel® IPP

Intel® VTune™ Profiler

Intel® Advisor

Intel® Distribution for GDB

Intel® Fortran Compiler Classic

Learn More & Download

intel.com/oneAPI-HPCKit

21

oneAPI Resources
software.intel.com/oneapi

Get Started

▪ software.intel.com/oneapi

▪ Documentation + dev guides
▪ Code Samples

▪ Intel® Developer Cloud

Industry Initiative

▪ oneAPI.io

▪ oneAPI open Industry Specification

▪ Open-source Implementations

Ecosystem

▪ Community Forums

▪ Academic Programs: oneAPI Centers of Excellence:
research, enabling code, curriculum, teaching

Learn

▪ Training: Webinars & courses

▪ Intel® DevMesh Innovator Projects

▪ Summits & Workshops: Live & on-demand virtual
workshops, community-led sessions

▪ Training by certified oneAPI experts worldwide for
HPC & AI

software.intel.com/oneapi
https://software.intel.com/en-us/oneapi/training
https://software.intel.com/en-us/oneapi/documentation
https://github.com/oneapi-src/oneAPI-samples
https://devcloud.intel.com/oneapi/get_started/
oneapi.com
https://spec.oneapi.com/versions/latest/index.html
https://www.oneapi.com/open-source/
https://software.intel.com/en-us/oneapi/training
https://techdecoded.intel.io/webinar-registration/upcoming-webinars/
https://devmesh.intel.com/projects?sort=best&query=oneAPI

SYCL Basics

Developer Software Engineering 23Intel Confidential Software @ Intel

Global Memory

Host Memory

Host

Device

(CPU)

Compute Unit
(CU)

Lo
cal M

em
o

ry
Lo

cal M
em

o
ry

Lo
cal M

em
o

ry
Lo

cal M
em

o
ry

Command
GroupCommand

GroupCommand
GroupCommand

Group

Command
Queue

Executed on…

submits...

Command
QueueCommand

Queue

Host code
Executed on…

SYCL Application

Device code

Private Memory

SYCL View of Heterogenous Computing Platform

Developer Software Engineering 24Intel Confidential Software @ Intel

Anatomy of a SYCL Application

24

#include <CL/sycl.hpp>

 using namespace sycl;

 int main() {

 std::vector<float> A(1024), B(1024), C(1024);

 // some data initialization

 {

 buffer bufA {A}, bufB {B}, bufC {C};

 queue q;

 q.submit([&](handler &h) {

 auto A = bufA.get_access(h, read_only);

 auto B = bufB.get_access(h, read_only);

 auto C = bufC.get_access(h, write_only);

 h.parallel_for(1024, [=](auto i){

 C[i] = A[i] + B[i];

 });

 });

 }

 for (int i = 0; i < 1024; i++)

 std::cout << "C[" << i << "] = " << C[i] << std::endl;

 }

Accelerator
device code

Host code

Host code

Developer Software Engineering 25Intel Confidential Software @ Intel

Anatomy of a SYCL Application

25

#include <CL/sycl.hpp>

 using namespace sycl;

 int main() {

 std::vector<float> A(1024), B(1024), C(1024);

 // some data initialization

 {

 buffer bufA {A}, bufB {B}, bufC {C};

 queue q;

 q.submit([&](handler &h) {

 auto A = bufA.get_access(h, read_only);

 auto B = bufB.get_access(h, read_only);

 auto C = bufC.get_access(h, write_only);

 h.parallel_for(1024, [=](auto i){

 C[i] = A[i] + B[i];

 });

 });

 }

 for (int i = 0; i < 1024; i++)

 std::cout << "C[" << i << "] = " << C[i] << std::endl;

 }

Command group
scope

Application scope

Application scope

Device scope

Developer Software Engineering 26Intel Confidential Software @ Intel

SYCL Basics

26

std::vector<float> A(1024), B(1024), C(1024);

 {

 buffer bufA {A}, bufB {B}, bufC {C};

 queue q;

 q.submit([&](handler &h) {

 auto A = bufA.get_access(h, read_only);

 auto B = bufB.get_access(h, read_only);

 auto C = bufC.get_access(h, write_only);

 h.parallel_for(1024, [=](auto i){

 C[i] = A[i] + B[i];

 });

 });

 }

 for (int i = 0; i < 1024; i++)

 std::cout << "C[" << i << "] = " << C[i] << std::endl;

 }

Buffers creation via host
vectors/pointers

Buffers encapsulate data in
a SYCL application

• Across both devices and
host!

Developer Software Engineering 27Intel Confidential Software @ Intel

SYCL Basics

27

std::vector<float> A(1024), B(1024), C(1024);

 {

 buffer bufA {A}, bufB {B}, bufC {C};

 queue q;

 q.submit([&](handler &h) {

 auto A = bufA.get_access(h, read_only);

 auto B = bufB.get_access(h, read_only);

 auto C = bufC.get_access(h, write_only);

 h.parallel_for(1024, [=](auto i){

 C[i] = A[i] + B[i];

 });

 });

 }

 for (int i = 0; i < 1024; i++)

 std::cout << "C[" << i << "] = " << C[i] << std::endl;

 }

• A queue submits
command groups to be
executed by the SYCL
runtime

• Queue is a mechanism
where work is submitted
to a device.

Developer Software Engineering 28Intel Confidential Software @ Intel

SYCL Basics

28

std::vector<float> A(1024), B(1024), C(1024);

 {

 buffer bufA {A}, bufB {B}, bufC {C};

 queue q;

 q.submit([&](handler &h) {

 auto A = bufA.get_access(h, read_only);

 auto B = bufB.get_access(h, read_only);

 auto C = bufC.get_access(h, write_only);

 h.parallel_for(1024, [=](auto i){

 C[i] = A[i] + B[i];

 });

 });

 }

 for (int i = 0; i < 1024; i++)

 std::cout << "C[" << i << "] = " << C[i] << std::endl;

 }

• Accessors creation

• Mechanism to access
buffer data

• Create data dependencies
in the SYCL graph that
order kernel executions

Developer Software Engineering 29Intel Confidential Software @ Intel

SYCL Basics

29

std::vector<float> A(1024), B(1024), C(1024);

 {

 buffer bufA {A}, bufB {B}, bufC {C};

 queue q;

 q.submit([&](handler &h) {

 auto A = bufA.get_access(h, read_only);

 auto B = bufB.get_access(h, read_only);

 auto C = bufC.get_access(h, write_only);

 h.parallel_for(1024, [=](auto i){

 C[i] = A[i] + B[i]; }

);

 });

 }

 for (int i = 0; i < 1024; i++)

 std::cout << "C[" << i << "] = " << C[i] << std::endl;

 }

id<1>range<1>{1024}

• Vector addition kernel
enqueues a parallel_for task.

• Pass a function
object/lambda to be
executed by each work-item

Developer Software Engineering 30Intel Confidential Software @ Intel

Host-side Memory Model – Buffer & Accessor

Buffers: Encapsulate data in a
SYCL application

• Across both devices and host!

Accessors: Mechanism to access
buffer data

• Create data dependencies in the
SYCL graph that order kernel
executions

30

int main() {
 auto R = range<1>{ num };
 buffer<int> A{ R }, B{ R };
 queue Q;

 Q.submit([&](handler& h) {
 accessor out(A, h, write_only);

 h.parallel_for(R, [=](auto idx) {
 out[idx] = idx[0]; }); });

 Q.submit([&](handler& h) {
 accessor out(A, h, write_only);
 h.parallel_for(R, [=](auto idx) {
 out[idx] = idx[0]; }); });
…

A

A
B

A

BKernel 1

Kernel 3

Kernel 2

Kernel 4

Developer Software Engineering 31Intel Confidential Software @ Intel

Host-side Memory Model – Unified Shared Memory

using namespace sycl;

int main() {

queue q;

float *a = malloc_shared<float>(N, q);

 float *b = malloc_shared<float>(N, q);

 float *c = malloc_shared<float>(N, q);

q.parallel_for(1024, [=](auto i) {

c[i] = a[i] + b[i];

}).wait();

for (int i=0; i<1024; i++) std::cout << c[i] << "\n";

free(a, q); free(b, q); free(c, q);

return 0;

}

Host
code

Accelerator
device code

Host
code

赵鹏：基于oneAPI的异构计算与问题求解 32

Notices & Disclaimers
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. Results may vary.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.
No product or component can be absolutely secure.

Texas Advanced Computing Center (TACC) Frontera references
Article: HPCWire: Visualization & Filesystem Use Cases Show Value of Large Memory Fat Notes on Frontera.
www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
software.intel.com/content/www/us/en/develop/articles/introduction-to-programming-with-persistent-memory-from-intel.html
wreda.github.io/papers/assise-osdi20.pdf

KFBIO
KFBIO m. tuberculosis screening detectron2 model throughput performance on 2nd Intel® Xeon® Gold 6252 processor: NEW: Test 1 (single instance with PyTorch 1.6: Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel® Xeon® Gold 6252
Processor, 24 cores, HT On, Turbo ON, Total Memory 192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated Test 2 (24 instances with
PyTorch 1.6: Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel Xeon Gold 6252 Processor, 24 cores, HT On, Turbo ON, Total Memory 192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode:
0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated BASELINE: (single instance with PyTorch 1.4): Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel Xeon Gold 6252 Processor, 24 cores, HT On, Turbo ON, Total Memory
192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated.

Tangent Studios
Configurations for Render Times with Intel® Embree, testing conducted by Tangent Animation Labs. Render farm: 8x Intel® Core™ processors +hyperthread*2 + 128gig. In-office workstations: Intel® Xeon® processors HP blade c7000 chassis, with
HP460 gen8 blades - 2x Intel Xeon E5-2650 V2, Eight Core 2.6GHz-128GB. Software: Blender 2.78 with custom build using Intel® Embree. For more information on Tangent’s work with Embree, watch this video:
www.youtube.com/watch?time_continue=251&v=_2Ia4h8q3xs&feature=emb_logo
Recreation of the performance numbers can be recreated using Agent327, Blender and Embree.

Chaos Group - Up to 90% Memory Reduction for Displacement
Testing conducted by Chaos Group with Intel® Embree 2020. Software Corona Renderer 5 with Intel Embree. Up to 90% memory reduction calculated using Corona Renderer 5 with regular displacement grids per triangle of 154 bytes versus
Corona Renderer 5 with Intel Embree, which has a displacement capability grid of 12 bytes per grid triangle. (12/154 = 7.8% usage or >90% memory reduction.) Recreation of the performance numbers can be accomplished using Corona
Renderer 5 and Embree. For more information, visit the Corona Renderer Blog: blog.corona-renderer.com/corona-renderer-5-for-3ds-max-released/

The Addams Family 2 - Gained a 10% to 20%—and sometimes 25%—efficiency in rendering, saving thousands of hours in rendering production time.
Testing Date: Results are based on data conducted by Cinesite 2020-21. 10% to up to 25% rendering efficiency/thousands of hours saved in rendering production time/15 hrs per frame per shot to 12-13 hrs.
Cinesite Configuration: 18-core Intel® Xeon® Scalable processors (W-2295) used in render farm, 2nd gen Intel Xeon processor-based workstations (W-2135 and -2195) used. Rendering tools: Gaffer, Arnold, along with optimizations by Intel® Open
Image Denoise.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, Agilex, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex
https://www.hpcwire.com/2021/02/02/visualization-and-fs-use-cases-show-value-of-large-memory-fat-nodes-on-frontera/
http://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-programming-with-persistent-memory-from-intel.html
https://wreda.github.io/papers/assise-osdi20.pdf
http://www.youtube.com/watch?time_continue=251&v=_2Ia4h8q3xs&feature=emb_logo
https://blog.corona-renderer.com/corona-renderer-5-for-3ds-max-released/

33

SYCL Program Structure
oneAPI Essentials

Learn about SYCL Program Structure, important SYCL Classes and Buffer Memory Model in SYCL

35DPC++ Essentials

Learning Objectives

Explain the SYCL fundamental classes

Use device selection to offload kernel workloads

Decide when to use basic parallel kernels and ND-Range kernels

Understand various ways to synchronize data between host and
device with using buffer memory model

Write a complete SYCL program that offload computation to
accelerator device

36DPC++ Essentials

oneAPIs implementation of SYCL

oneAPIs implementation of SYCL (DPC++)

 = C++ and SYCL* standard and extensions

Based on modern C++

▪ C++ productivity benefits and familiar constructs

Standards-based, cross-architecture

▪ Incorporates the SYCL standard for data parallelism and heterogeneous
programming

37DPC++ Essentials

Extends SYCL* standard

Enhance Productivity

• Simple things should be simple to express

• Reduce verbosity and programmer burden

Enhance Performance

• Give programmers control over program execution

• Enable hardware-specific features

Fast-moving open collaboration feeding into the SYCL* standard

• Open source implementation with goal of upstream LLVM

• extensions aim to become core SYCL*, or Khronos* extensions

38DPC++ Essentials

A Complete SYCL Program

Single source

• Host code and heterogeneous
accelerator kernels can be
mixed in same source files

Familiar C++

• Library constructs add
functionality, such as:

#include <CL/sycl.hpp>

constexpr int N=16;

using namespace sycl;

int main() {

queue q;

int *data = malloc_shared<int>(N, q);

q.parallel_for(N, [=](auto i) {

data[i] = i;

}).wait();

for (int i=0; i<N; i++) std::cout << data[i] << "\n";

free(data, q);

return 0;

}

Host
code

Accelerator
device code

Host
code

Construct Purpose

queue Work targeting

malloc_shared Data management

parallel_for Parallelism

39DPC++ Essentials

SYCL Classes

40DPC++ Essentials

Device

• The device class represents the capabilities of the accelerators in a oneAPI system.

• The device class contains member functions for querying information about the device, which is
useful for DPC++ programs where multiple devices are created.

• The function get_info gives information about the device:

• Name, vendor, and version of the device

• The local and global work item IDs

• Width for built in types, clock frequency, cache width and sizes, online or offline

queue q;

device my_device = q.get_device();

std::cout << "Device: " << my_device.get_info<info::device::name>() << std::endl;

41DPC++ Essentials

Device Selector

• The device_selector class enables the runtime selection of a particular device to
execute kernels based upon user-provided heuristics.

• The following code sample shows use of the standard device selectors
(default_selector, cpu_selector, gpu_selector…) and a derived device_selector

default_selector selector;

// host_selector selector;

// cpu_selector selector;

// gpu_selector selector;

queue q(selector);

std::cout << "Device: " << q.get_device().get_info<info::device::name>() << std::endl;

42DPC++ Essentials

Queue

• A queue submits command groups to be executed by the SYCL runtime

• Queue is a mechanism where work is submitted to a device.

• A Queue map to one device and multiple queues can be mapped to the
same device.

queue q;

q.submit([&](handler& h) {

// COMMAND GROUP CODE

});

43DPC++ Essentials

Choosing Where Device Kernels Run

Work is submitted to queues

• Each queue is associated with exactly one device (e.g. a specific GPU or FPGA)

• You can:

• Decide which device a queue is associated with (if you want)

• Have as many queues as desired for dispatching work in heterogeneous systems

Create queue targeting any device: queue();

Create queue targeting a pre-
configured classes of devices:

queue(cpu_selector{});
queue(gpu_selector{});
queue(intel::fpga_selector{});
queue(accelerator_selector{});
queue(host_selector{});

Create queue targeting specific
device (custom criteria):

class custom_selector : public device_selector {
 int operator()(…… // Any logic you want!
…
queue(custom_selector{});

Always
available

44DPC++ Essentials

Kernel

• The kernel class encapsulates methods and data for executing code on
the device when a command group is instantiated

• Kernel object is not explicitly constructed by the user

• Kernel object is constructed when a kernel dispatch function, such as
parallel_for, is called

q.submit([&](handler& h) {

h.parallel_for(range<1>(N), [=](id<1> i) {

A[i] = B[i] + C[i]);

});

});

45DPC++ Essentials

DPC++ language and runtime

• DPC++ language and runtime consists of a set of C++ classes, templates, and
libraries

• Application scope and command group scope :

• Code that executes on the host

• The full capabilities of C++ are available at application and command
group scope

• Kernel scope:

• Code that executes on the device.

• At kernel scope there are limitations in accepted C++

46DPC++ Essentials

Parallel Kernels

• Parallel Kernel allows multiple instances of an operation to execute in parallel.

• Useful to offload parallel execution of a basic for-loop in which each iteration is
completely independent and in any order.

• Parallel kernels are expressed using the parallel_for function

h.parallel_for(range<1>(1024), [=](id<1> i){

A[i] = B[i] + C[i];

});

for(int i=0; i < 1024; i++){

a[i] = b[i] + c[i];

});

for-loop in CPU application Offload to accelerator using parallel_for

47DPC++ Essentials

Basic Parallel Kernels

The functionality of basic parallel kernels is exposed via range, id
and item classes

h.parallel_for(range<1>(1024), [=](id<1> idx){

 // CODE THAT RUNS ON DEVICE

});

h.parallel_for(range<1>(1024), [=](item<1> item){

 auto idx = item.get_id();

 auto R = item.get_range();

 // CODE THAT RUNS ON DEVICE

});

• range class is used to describe the
iteration space of parallel execution

• id class is used to index an individual
instance of a kernel in a parallel
execution

• item class represents an individual
instance of a kernel function, exposes
additional functions to query
properties of the execution range

48DPC++ Essentials

ND-Range Kernels

Basic Parallel Kernels are easy way to parallelize a for-loop but does not allow
performance optimization at hardware level.

ND-Range kernel is another way to expresses parallelism which enable low level
performance tuning by providing access to local memory and mapping
executions to compute units on hardware.

• The entire iteration space is divided into smaller
groups called work-groups, work-items within a work-
group are scheduled on a single compute unit on
hardware.

• The grouping of kernel executions into work-groups
will allow control of resource usage and load balance
work distribution.

49DPC++ Essentials

ND-Range Kernels

The functionality of nd_range kernels is exposed via nd_range and nd_item
classes

• nd_range class represents a grouped execution range using global execution range and the
local execution range of each work-group.

• nd_item class represents an individual instance of a kernel function and allows to query for
work-group range and index.

h.parallel_for(nd_range<1>(range<1>(1024),range<1>(64)), [=](nd_item<1> item){

auto idx = item.get_global_id();

auto local_id = item.get_local_id();

// CODE THAT RUNS ON DEVICE

}); global size work-group size

50DPC++ Essentials

Memory Models

SYCL programs can either use a pointer-based memory model called
Unified Shared Memory or can use Buffer-Accessor memory model

• Unified Shared Memory – pointer-based memory model to access
data on host and device

• Buffer Memory Model – defines shared array of one, two or three
dimensions that can be used by the SYCL kernel and has to be
accessed using accessor classes

51DPC++ Essentials

Unified Shared Memory

Unified Shared Memory enables accessing memory on the host and device with
same pointer reference

queue q;

auto data = malloc_shared<int>(N, q);

for(int i=0;i<N;i++) data[i] = 10;

q.parallel_for(N, [=](auto i){

data[i] += 1;

}).wait();

for(int i=0;i<N;i++) std::cout << data[i] << " ";

free(data, q);

Host can initialize

Device can modify

Host has output

Setup Unified
Shared Memory

52DPC++ Essentials

Buffer Memory Model

Buffers: Encapsulate data in a
SYCL application

• Across both devices and host!

Accessors: Mechanism to access
buffer data

• Create data dependencies in the
SYCL graph that order kernel
executions

queue q;

std::vector<int> v(N, 10);

{

buffer buf(v);

q.submit([&](handler& h) {

accessor a(buf, h , write_only);

h.parallel_for(N, [=](auto i) { a[i] = i; });

});

}

for (int i = 0; i < N; i++) std::cout << v[i] << " ";

53DPC++ Essentials

SYCL Code Anatomy

• SYCL programs require the include of CL/sycl.hpp

• It is recommended to employ the namespace statement to save typing repeated
references into the sycl namespace

#include <CL/sycl.hpp>

using namespace sycl;

54DPC++ Essentials

SYCL Code Anatomy

Done!
The results are copied to vector `c` at `buf_c` buffer destruction

Step 1: create a device queue
(developer can specify a device type via
device selector or use default selector)

Step 2: create buffers
(represent both host and
device memory)

Step 3: submit a command for
(asynchronous) execution

Step 4: create buffer accessors
to access buffer data on the
device

Step 5: send a kernel (lambda) for
execution

Step 6: write a kernel

Kernel invocations
are executed in
parallel

Kernel is invoked
for each element of
the range

Kernel invocation
has access to the
invocation id

void dpcpp_code(int* a, int* b, int* c) {
// Setting up a DPC++ device queue
queue q;
// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));
//Submit Command group function object to the queue
q.submit([&](handler &h){
 //Create device accessors to buffers allocated in global memory
 accessor A(buf_a, h, read_only);
 accessor B(buf_b, h, read_only);
 accessor C(buf_c, h, write_only);
 //Specify the device kernel body as a lambda function
 h.parallel_for(range<1>(N), [=](auto i){

 C[i] = A[i] + B[i];
});

});
}

55DPC++ Essentials

Custom Device Selector

The following code shows derived device_selector that employs a device selector
heuristic. The selected device prioritizes a GPU device because the integer rating
returned is higher than for CPU or other accelerator.

#include <CL/sycl.hpp>
using namespace cl::sycl;
class my_device_selector : public device_selector {
public:
 int operator()(const device& dev) const override {
 int rating = 0;
 if (dev.is_gpu() & (dev.get_info<info::device::name>().find("Intel") != std::string::npos))
 rating = 3;
 else if (dev.is_gpu()) rating = 2;
 else if (dev.is_cpu()) rating = 1;
 return rating;
 };
};
int main() {
 my_device_selector selector;
 queue q(selector);
 std::cout << "Device: “ << q.get_device().get_info<info::device::name>() << std::endl;
 return 0;
}

56DPC++ Essentials

Asynchronous Execution

Think of a SYCL application as two parts:

1. Host code

2. The graph of kernel executions

These execute independently, except at synchronizing operations

• The host code submits work to build the graph (and can do compute work
itself)

• The graph of kernel executions and data movements executes asynchronously
from host code, managed by the SYCL runtime

57DPC++ Essentials

Asynchronous Execution

#include <CL/sycl.hpp>
constexpr int N=16;
using namespace sycl;
int main() {
std::vector<int> data(N);
{

 buffer A(data);
 queue q;

 q.submit([&](handler& h) {
 accessor out(A, h, write_only);
 h.parallel_for(N, [=](auto i) {
 out[i] = i;

 });
 });
}
for (int i=0; i<N; ++i) std::cout << data[i];

}

Host code
execution

Enqueues
kernel to
graph, and
keeps
going

Kernel

A

A

Graph executes
asynchronously
to host program

Host Graph

58DPC++ Essentials

Implicit dependency between kernels

Program
completion

A

A

B

A

B

int main() {
 auto R = range<1>{ num };
 buffer<int> A{ R }, B{ R };
 queue q;

 q.submit([&](handler& h) {
 accessor out(A, h, write_only);
 h.parallel_for(R, [=](id<1> i) {
 out[i] = i; }); });

 q.submit([&](handler& h) {
 accessor out(A, h, write_only);
 h.parallel_for(R, [=](id<1> i) {
 out[i] = i; }); });

 q.submit([&](handler& h) {
 accessor out(B, h, write_only);
 h.parallel_for(R, [=](id<1> i) {
 out[i] = i; }); });

 q.submit([&](handler& h) {
 accessor in(A, h, read_only);
 accessor inout(B, h);
 h.parallel_for(R, [=](id<1> i) {
 inout[i] *= in[i]; }); });
}

Kernel 1

Kernel 3

Kernel 2

Kernel 4

= data
dependence

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Automatic data and control
dependence resolution!

59DPC++ Essentials

Host Accessors

• An accessor which uses host buffer access target

• Created outside of command group scope

• The data that this gives access to will be available on the host

• Used to synchronize the data back to the host by constructing the

host accessor objects

60DPC++ Essentials

Synchronization – Host Accessors

#include <CL/sycl.hpp>
using namespace sycl;
constexpr int N = 16;

int main() {
std::vector<double> v(N, 10);
queue q;

buffer buf(v);
q.submit([&](handler& h) {

 accessor a(buf, h)
 h.parallel_for(N, [=](auto i) {

 a[i] -= 2;
});

});

host_accessor b(buf, read_only);
for (int i = 0; i < N; i++)

std::cout << b[i] << "\n";
return 0;

}

Buffer takes ownership of the

data stored in vector.

Creating host accessor is a

blocking call and will only return

after all enqueued kernels that

modify the same buffer in any

queue completes execution and

the data is available to the host

via this host accessor.

61DPC++ Essentials

Synchronization – Buffer Destruction

#include <CL/sycl.hpp>
 using namespace sycl;
 constexpr int N=16;

 void dpcpp_code(std::vector<double> &v, queue &q){
buffer buf(v);
q.submit([&](handler& h) {
 accessor a(buf, h);
 h.parallel_for(N, [=](auto i) {

a[i] -= 2;
 });
});

 }

 int main() {
std::vector<double> v(N, 10);
queue q;
dpcpp_code(v,q);
for (int i = 0; i < N; i++)

std::cout << v[i] << "\n";
return 0;

 }

Buffer creation happens within a

separate function scope.

When execution advances

beyond this function scope,

buffer destructor is invoked

which relinquishes the ownership

of data and copies back the data

to the host memory.

62

	Slide 1: oneAPI Industry Initiative & Intel® oneAPI Tools
	Slide 2: Agenda
	Slide 3: oneAPI Goal
	Slide 4: Modern Applications Demand Increased Processing
	Slide 5: Offload v.s. Heterogenous Computing
	Slide 6: 异构计算软件生态现状
	Slide 7: oneAPI Industry Initiative Break the Chains of Proprietary Lock-in
	Slide 8: Intel® Developer Tools Supporting oneAPI A complete set of proven tools expanded from CPU to accelerators
	Slide 9: Accelerating Choice with SYCL* Khronos Group Standard
	Slide 10: SYCLomatic: CUDA* to SYCL* Migration Made Easy Choose where to run your software, don’t let the software choose for you.
	Slide 11: Codeplay oneAPI Plug-ins for Nvidia* & AMD* Support for Nvidia & AMD GPUs to Intel® oneAPI Base Toolkit
	Slide 12: oneAPI Libraries
	Slide 13: oneAPI Industry Momentum
	Slide 14: oneAPI Commercial & Community Support Available
	Slide 15: Maximize Your Performance With Intel Developer Tools & Hardware Platforms
	Slide 16: Details about Intel® oneAPI Toolkits
	Slide 17: Intel® oneAPI Base Toolkit Accelerate Data-centric Workloads
	Slide 18: Productive and Performant SYCL Compiler Intel® oneAPI DPC++/C++ Compiler
	Slide 19: Analysis & Debug Tools Get More from Diverse Hardware
	Slide 20: Intel® oneAPI Tools for HPC Intel® oneAPI HPC Toolkit
	Slide 21: oneAPI Resources software.intel.com/oneapi
	Slide 22: SYCL Basics
	Slide 23: SYCL View of Heterogenous Computing Platform
	Slide 24: Anatomy of a SYCL Application
	Slide 25: Anatomy of a SYCL Application
	Slide 26: SYCL Basics
	Slide 27: SYCL Basics
	Slide 28: SYCL Basics
	Slide 29: SYCL Basics
	Slide 30: Host-side Memory Model – Buffer & Accessor
	Slide 31: Host-side Memory Model – Unified Shared Memory
	Slide 32: Notices & Disclaimers
	Slide 33
	Slide 34: SYCL Program Structure
	Slide 35: Learning Objectives
	Slide 36: oneAPIs implementation of SYCL
	Slide 37: Extends SYCL* standard
	Slide 38: A Complete SYCL Program
	Slide 39: SYCL Classes
	Slide 40: Device
	Slide 41: Device Selector
	Slide 42: Queue
	Slide 43: Choosing Where Device Kernels Run
	Slide 44: Kernel
	Slide 45: DPC++ language and runtime
	Slide 46: Parallel Kernels
	Slide 47: Basic Parallel Kernels
	Slide 48: ND-Range Kernels
	Slide 49: ND-Range Kernels
	Slide 50: Memory Models
	Slide 51: Unified Shared Memory
	Slide 52: Buffer Memory Model
	Slide 53: SYCL Code Anatomy
	Slide 54: SYCL Code Anatomy
	Slide 55: Custom Device Selector
	Slide 56: Asynchronous Execution
	Slide 57: Asynchronous Execution
	Slide 58: Implicit dependency between kernels
	Slide 59: Host Accessors
	Slide 60: Synchronization – Host Accessors
	Slide 61: Synchronization – Buffer Destruction
	Slide 62

