
Suggested line of text (optional):

WE START WITH YES.

HIP ON AURORA: BRINGING HIP TO ONEAPI

erhtjhtyhy

2022/05/27

HIP ON AURORA PROJECT TEAM
Colleen Bertoni, Brice Videau

ONEAPI DEVSUMMIT

INCREASING THE PORTABILITY OF HIP APPLICATIONS

• HIP is a likely target for many large scale HPC applications
• Several recent and upcoming DOE platforms will support HIP:

• 2 Exascale systems will feature AMD GPUs (OLCF, LLNL)
• 3 Pre-exascale systems use NVIDIA GPUs (Summit, Perlmutter, Polaris)

• The upcoming Aurora Exascale system utilizes Intel GPUs
• Intel is not providing support for HIP
• CUDA/HIP codes targeting Intel GPUs typically create a SYCL implementation

• The ECP "HIP on Aurora" project is working to provide HIP on Intel GPUs
• Unify Level Zero and OpenCL support, refactor HIP, create test suite, evaluate usages

Supporting HIP Applications on Intel GPUs

2

CODES WITH CUDA/HIP OR SYCL IMPLEMENTATIONS
From ECP or the ALCF Early Science Program

3

Codes Using SYCL and HIP

HACC

GRID

QUDA

NWChemEx

MetaHipMer

Uintah

NYX

MadGraph

FastCaloSim

NAMD

NekRs (via OCCA)

E3SM (via YALK)

GENE (via gtensor)

AMReX (AMR-Wind, MFIX, FLASH-X, WarpX, Pele)

Libraries Using SYCL and HIP

Kokkos

RAJA

SuperLU

Ginko

HYPRE

Sundials

FFTX

Codes with HIP only
Libcchem (GAMESS)

SHIFT

ALCF and OLCF are also working with Codeplay
on a HIP backend for Intel DPC++ Compiler

Instructions on
replacing a
current image:

1. Select and
delete image
and click the
icon to insert
a different
image

2. Use the crop
tool to position
the image
within the
shape.

4

• National labs
– Compiler and runtime researchers focused on HPC

community
– Users and developers of HPC applications

CHIP-SPV TEAM COLLABORATORS
Collaboration made up of National Labs, Academia, Industry

• Academia
– Compiler and runtime researchers focused on new

programming technologies

• Industry
– Developers of AMD GPUs and HIP
– Developers of Intel GPUs and oneAPI

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

HIPLZ: HIP ON TOP OF LEVEL ZERO

WHAT IS HIP?

• HIP is AMD’s portable GPU programming model
• Very similar to CUDA

– CUDA programs can be automatically translated to HIP (via HIPIFY)
– HIP programs run natively on AMD GPUs using ROCm + LLVM/Clang
– HIP programs run natively on NVIDIA GPUs using CUDA + nvcc

• AMD provides GPU accelerated math libraries
– hipBLAS, hipFFT, hipSPARSE, …
– Wrappers around AMD and Nvidia GPU compute libraries

– Example: hipBLAS wraps rocBLAS and cuBLAS
• High performance on both AMD and Nvidia GPUs by design

Heterogeneous-Computing Interface for Portability

6

HIP WORKFLOW

• AMD's HIP is derived from the C++ CUDA programming model
• C++ Kernels + Device Management API

Multipass Compilation

7

LLVM HIP Frontend

X86 Binary + HIP API

AMD IR

LLVM AMD backend

LLVM X86 Backend
Executable

HIP Fat
Binary

LLVM Linker

HIP
Library
RocM

HIP API

HIPCC

HIP Host IR

HIP Device IR

HIP Source Code

HIPCL WORKFLOW

• HIP on top of OpenCL
• Use SPIR-V as a device IR

Modified Front-End and Back-End

8

Modified LLVM HIP Frontend

X86 Binary + HIP API

SPIR-V IR

LLVM-SPIRV translator

LLVM X86 Backend
Executable

HIP Fat
Binary

LLVM Linker

HIP
OpenCL
Library

HIP API

HIP Host IR

HIP Device IR

HIP Source Code

HIPLZ: A PROTOTYPE FOR CHIP-SPV

• Replace the OpenCL backend of HIPCL by Level Zero (L0):
– L0: native offload API on Intel architectures,
– Mostly one to one mapping between OpenCL API and Level-Zero API,
– Supported on Aurora.

• Add support for new functionalities (and backport to HIPCL):
– Textures,
– Device linking, global variables,
– Host callbacks,
– Unified memory,
– Interoperability with SYCL + hipBLAS prototype on top of oneMKL
– Add missing API and math functions.

• Work happened on off-the-shelf hardware and the open source Intel oneAPI toolchain
• Heavy refactoring of the original HIPCL code
• Deprecated prototype available here: https://github.com/jz10/anl-gt-gpu

HIPCL: OpenCL ==> HIPLZ: Level Zero

9

http://phttps/github.com/jz10/anl-gt-gpu

HIPLZ WORKFLOW

• HIP on top of Level Zero
• Based on HIPCL

More Passes and a New Runtime Library

10

Modified LLVM HIP Frontend

X86 Binary + HIP API

SPIR-V IR

LLVM-SPIRV translator

LLVM X86 Backend
Executable

HIP Fat
Binary

LLVM Linker

HIP Level
Zero

Library

HIP API

Additional LLVM Passes

HIP Source Code
HIP Host IR

HIP Device IR

NEW SUPPORTED FEATURES

• Textures:
– hipTextureObject_t encapsulates textures and samplers in an opaque handle,
– Technically not possible with SPIRV, but in practice works if calls are correctly inline by the device

compiler,
– On the host side textures and samplers are passed as individual kernel arguments,
– No support for per dimension sampling type (unsupported in HIP as well).

• Device linking, global variables:
– Compiler side is (almost) straightforward,
– Accessing device global variables on the runtime side requires use of Intel extensions.

• Host callbacks:
– Complex in Level-Zero, requires lot of synchronization and helper threads.

• Unified Memory:
– Implemented on top of USM in Level-Zero and Intel USM extension in OpenCL.

Techniques used

11

HIPLZ EVALUATION

• Created a test suite with code of interest for Aurora
• Currently working well

– SU3_bench (MILC microbenchmark)
– ERT and BabelStream (Memory Bandwidth and

Floating point benchmarks)
– Sparkler (Miniapp for CoMet)

• Issues faced with the other proxies
– Variables hard-coded for Nvidia architecture

(like 32 for warp size)
– Some HIP functions are not yet implemented

(for example 3 argument shuffles)
• Deprecated repository:

• https://github.com/jz10/hip-test_suite

Test Suite

12

├── HIP-Examples
├── applications
│ ├── cholla
├── benchmarks
│ ├── conformance
│ └── performance
│ ├── BabelStream
│ ├── cs-roofline-toolkit
│ └── rocHPCG
├── frameworks
│ ├── RAJA
│ ├── kokkos
├── proxies
│ ├── BerkeleyGW-Kernels-CPP(2)
│ ├── KokkosDslash
│ ├── adept-proxy
│ ├── GridMini
│ ├── RSBench
│ └── su3_bench

https://github.com/jz10/hip-test_suite

PROGRESS REPORT

• Assess the functionalities of HIPCL/HIPLZ
• Out of 52 tests,

– 46 (88%) compile without errors
– 40 (77%) compile and run without crashing
– 37 (71%) compile, run without crashing, and

give the correct answer.
• Main causes of failure:

– cmake integration being out of date with
AMD HIP’s cmake

– not all functions implemented yet, such
as __shfl (3 argument version)

• Kokkos now compiles, thanks to new
hipMemcpyToSymbol, etc. implementations!

Test Suite

13

$ git clone \
https://github.com/jz10/hip-test_suite.git

$ cd hip-test_suite
$./run_tests.sh

https://github.com/jz10/hip-test_suite.git

TEST SUITE RESULTS
Test Build Run Correct Answer

BabelStream Y Y Y

cs-roofline-toolkit Y Y Y

cholla N

KokkosDslash N

su3_bench Y Y Y

BerkeleyGW-FF N

BerkeleyGW-GPP Y N

add4 Y Y Y

cuda-stream Y Y Y

gpu-burn Y Y

mini-nbody Y Y Y

reduction Y Y Y

rodinia_3.0 (18 tests) N N N

rtm8 Y Y Y

strided-access Y Y Y

vectorAdd Y Y Y

GPU-STREAM Y Y

14

Test Build Run Correct Answer
mixbench Y Y Y

BinomialOption Y Y Y

BitonicSort Y Y Y

FastWalshTransform Y Y Y

FloydWarshall Y Y Y

HelloWorld Y Y

Histogram Y Y Y

MatrixMultiplication Y Y Y

PrefixSum Y Y Y

RecursiveGaussian Y Y Y

SimpleConvolution Y Y Y

dct Y Y Y

dwtHaar1D Y Y Y

kokkos N

raja N

adept-proxy N

occa Y N

• Empirical roofline toolkit
– Empirically measures bandwidth

and peak performance

• Su3_bench microbenchmark
– Kernel based on the SU(3)

routine in the MILC Lattice
Quantum Chromodynamics code

15

HIGHLIGHTS: HIPCL AND HIPLZ ON INTEL GEN9

DRAM Bandwidth
(GB/s)

FP64 peak
(Gflop/s)

FP32 peak
(Gflop/s)

HIPCL 25.48 301.66 1235.39
OpenCL 25.77 299.12 1184.91
HIPLZ 25.84 303.22 1240.69

Total execution
time (s) Total GFLOP/s Total GByte/s

(GPU)

HIPCL 30.26 29.93 22.17
OpenCL 31.59 28.67 21.24
HIPLZ 31.46 28.79 21.32

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

HIPCL + HIPLZ => CHIP-SPV

HIP RESTRUCTURING BY AMD
• HIP Restructuring Objectives:

– Allow independent backends in HIP,
– Allow new backends to leverage CI tests,
– Create a test suite derived from the HIPLZ test suite.

• HIP Restructuring:
– HIP has been split into a common repository, and an AMD specific backend

repository
– CI tests have been reworked to allow running them in different environement
– HIP test suit available on GitHub
– hipcc and hipConfig have been ported to C++ and provide a plugin

mechanism to extend to new backends

17

THE CHIP-SPV PROJECT

• Two distinct aspect
– Upstream necessary front-end compiler modifications into Clang/LLVM
– Create unified back-end supporting OpenCL and Level-Zero

• Front-end upstreaming:
– Necessary patches are live in Clang14, adding a SPIR-V target to the LLVM/Clang HIP frontend
– Relies on the spirv-llvm translator, but is ready to use the SPIR-V LLVM backend once it arrives

• CHIP-SPV backend (https://github.com/CHIP-SPV):
– New passes added to diminish reliance on extensions and provide new functionalities

– Global variables
– Textures
– printf, abort

– Unified OpenCL and Level-Zero behind a common abstraction layer
– Switching between Level-Zero and OpenCL can be done at runtime
– 80 % pass rate on HIP unit tests

Compiler and Back-End

18

https://github.com/CHIP-SPV

CHIP-SPV COMPONENTS

19

Name Description Open Source Origin Maintainer

HIP Frontend LLVM HIP Frontend Yes (GitHub) AMD LLVM/Clang + AMD

HIPSPV HIP LLVM/Clang SPIR-V
compiler backend

Yes (GitHub) HIPCL/HIPLZ LLVM/Clang

LLVM/SPIR-V Translator Translation layer Yes (GitHub) Khronos Khronos

HIP Common HIP Frontend + CI + Tools Yes (GitHub) AMD/HIPLZ AMD

HIP Test Suite Test suite of HIP
applications

Yes (GitHub) AMD/HIPLZ AMD

IGC Intel Graphics Compiler Yes (GitHub) Intel Intel

Level Zero Intel new Runtime API Yes (GitHub) Intel Intel

CHIP-SPV New HIP backend for Intel
GPUs

Yes (GitHub) HIPCL/HIPLZ ALCF

NEXT STEPS

• Continue the upstreaming work
– Implement new HIP features as they are adopted
– Continue pushing patches to LLVM (add required passes as they mature)
– Continue the test suite work and HIP refactoring

• Find full-fledged HIP applications, identify gaps, and close them:
– Implement missing runtime feature for applications
– Solve compiler related gaps
– Work on enabling required math libraries on top of oneAPI

• Investigate CHIP-SPV as a CUDA backend

Real Application Support

20

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

CONCLUSION AND PERSPECTIVES

CONCLUSION

• oneAPI and Level-Zero allowed:
– Porting most features of HIP to Intel GPUs,
– Leveraging existing oneAPI libraries,
– While maintaining great performance.

• SPIR-V support enabled:
– Leveraging Khronos tools,
– The work to be upstreamed in LLVM,
– Interchangeable Level-Zero and OpenCL backends,
– Interest from other OpenCL vendors.

oneAPI with SPIRV Support is an Awesome Portability Platform

22

PERSPECTIVES

• Continues removing portability obstacles:
– New SPIR-V and OpenCL extensions are being written (printf, abort),
– Working with Intel to ease writing runtimes on top of Level-Zero,
– Identify and close gaps in oneAPI math libraries functionalities and

performances vs HIP equivalents.
• Investigate real applications:

– ECP applications,
– Anyone interested in running specific HIP applications on Intel GPUs?

• SPIR-V LLVM backend in Clang15
• Investigate CUDA on SPIR-V backend using Clang toolc-chain

Convergence of Heterogeneous Programming Models

23

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

QUESTIONS?

Suggested closing statement (optional):

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

ACKNOWLEDGMENTS

ACKNOWLEDGMENT

• The HIP on Aurora team is composed of: Colleen Bertoni (ANL), Kevin Harms (ANL), Scott Parker
(ANL), Jisheng Zaho (GaTech), Jeffrey Young (GaTech), Wael Elwasif (ORNL), Phillip Roth (ORNL),
Rahulkumar Gayatri (NERSC), Pekka Jääskeläinen (Parmance), Henry Linjamäki (Parmance), Paulius
Velesko (PaganLC), Diwakar Das (AMD), Rahul Garg (AMD), Angela Wang (AMD), Peng Tu (Intel), and
all those I forgot, apologies.

• This work was supported by the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357, and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and the National Nuclear Security
Administration). We also gratefully acknowledge the computing resources provided and operated by the
Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

