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INCREASING THE PORTABILITY OF HIP APPLICATIONS

• HIP is a likely target for many large scale HPC applications
• Several recent and upcoming DOE platforms will support HIP:

• 2 Exascale systems will feature AMD GPUs (OLCF, LLNL)
• 3 Pre-exascale systems use NVIDIA GPUs (Summit, Perlmutter, Polaris)

• The upcoming Aurora Exascale system utilizes Intel GPUs
• Intel is not providing support for HIP
• CUDA/HIP codes targeting Intel GPUs typically create a SYCL implementation

• The ECP "HIP on Aurora" project is working to provide HIP on Intel GPUs
• Unify Level Zero and OpenCL support, refactor HIP, create test suite, evaluate usages

Supporting HIP Applications on Intel GPUs
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CODES WITH CUDA/HIP OR SYCL IMPLEMENTATIONS
From ECP or the ALCF Early Science Program
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Codes Using SYCL and HIP

HACC

GRID

QUDA

NWChemEx

MetaHipMer

Uintah

NYX

MadGraph

FastCaloSim

NAMD

NekRs (via OCCA)

E3SM (via YALK)

GENE (via gtensor)

AMReX (AMR-Wind, MFIX, FLASH-X, WarpX, Pele)

Libraries Using SYCL and HIP

Kokkos

RAJA

SuperLU

Ginko

HYPRE

Sundials

FFTX

Codes with HIP only
Libcchem (GAMESS)

SHIFT

ALCF and OLCF are also working with Codeplay 
on a HIP backend for Intel DPC++ Compiler
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• National labs
– Compiler and runtime researchers focused on HPC 

community
– Users and developers of HPC applications

CHIP-SPV TEAM COLLABORATORS
Collaboration made up of National Labs, Academia, Industry

• Academia
– Compiler and runtime researchers focused on new 

programming technologies 

• Industry
– Developers of AMD GPUs and HIP
– Developers of Intel GPUs and oneAPI
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HIPLZ: HIP ON TOP OF LEVEL ZERO



WHAT IS HIP?

• HIP is AMD’s portable GPU programming model
• Very similar to CUDA

– CUDA programs can be automatically translated to HIP (via HIPIFY)
– HIP programs run natively on AMD GPUs using ROCm + LLVM/Clang
– HIP programs run natively on NVIDIA GPUs using CUDA + nvcc

• AMD provides GPU accelerated math libraries
– hipBLAS, hipFFT, hipSPARSE, …
– Wrappers around AMD and Nvidia GPU compute libraries

– Example: hipBLAS wraps rocBLAS and cuBLAS
• High performance on both AMD and Nvidia GPUs by design

Heterogeneous-Computing Interface for Portability
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HIP WORKFLOW

• AMD's HIP is derived from the C++ CUDA programming model
• C++ Kernels + Device Management API

Multipass Compilation
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LLVM HIP Frontend

X86 Binary + HIP API

AMD IR

LLVM AMD backend

LLVM X86 Backend
Executable

HIP Fat
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HIP 
Library
RocM

HIP API

HIPCC

HIP Host IR

HIP Device IR

HIP Source Code



HIPCL WORKFLOW

• HIP on top of OpenCL
• Use SPIR-V as a device IR

Modified Front-End and Back-End

8

Modified LLVM HIP Frontend

X86 Binary + HIP API

SPIR-V IR
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HIPLZ: A PROTOTYPE FOR CHIP-SPV

• Replace the OpenCL backend of HIPCL by Level Zero (L0):
– L0: native offload API on Intel architectures,
– Mostly one to one mapping between OpenCL API and Level-Zero API,
– Supported on Aurora.

• Add support for new functionalities (and backport to HIPCL):
– Textures,
– Device linking, global variables,
– Host callbacks,
– Unified memory,
– Interoperability with SYCL + hipBLAS prototype on top of oneMKL
– Add missing API and math functions.

• Work happened on off-the-shelf hardware and the open source Intel oneAPI toolchain
• Heavy refactoring of the original HIPCL code
• Deprecated prototype available here: https://github.com/jz10/anl-gt-gpu

HIPCL: OpenCL ==> HIPLZ: Level Zero
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http://phttps/github.com/jz10/anl-gt-gpu


HIPLZ WORKFLOW

• HIP on top of Level Zero
• Based on HIPCL

More Passes and a New Runtime Library
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Modified LLVM HIP Frontend

X86 Binary + HIP API

SPIR-V IR

LLVM-SPIRV translator
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HIP Host IR

HIP Device IR



NEW SUPPORTED FEATURES

• Textures:
– hipTextureObject_t encapsulates textures and samplers in an opaque handle,
– Technically not possible with SPIRV, but in practice works if calls are correctly inline by the device 

compiler,
– On the host side textures and samplers are passed as individual kernel arguments,
– No support for per dimension sampling type (unsupported in HIP as well).

• Device linking, global variables:
– Compiler side is (almost) straightforward,
– Accessing device global variables on the runtime side requires use of Intel extensions.

• Host callbacks:
– Complex in Level-Zero, requires lot of synchronization and helper threads.

• Unified Memory:
– Implemented on top of USM in Level-Zero and Intel USM extension in OpenCL.

Techniques used
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HIPLZ EVALUATION

• Created a test suite with code of interest for Aurora
• Currently working well

– SU3_bench (MILC microbenchmark)
– ERT and BabelStream (Memory Bandwidth and 

Floating point benchmarks)
– Sparkler (Miniapp for CoMet)

• Issues faced with the other proxies
– Variables hard-coded for Nvidia architecture 

(like 32 for warp size)
– Some HIP functions are not yet implemented 

(for example 3 argument shuffles)
• Deprecated repository:

• https://github.com/jz10/hip-test_suite

Test Suite
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├── HIP-Examples
├── applications
│   ├── cholla
├── benchmarks
│   ├── conformance
│   └── performance
│       ├── BabelStream
│       ├── cs-roofline-toolkit
│       └── rocHPCG
├── frameworks
│   ├── RAJA
│   ├── kokkos
├── proxies
│   ├── BerkeleyGW-Kernels-CPP(2)
│   ├── KokkosDslash
│   ├── adept-proxy
│   ├── GridMini
│   ├── RSBench
│   └── su3_bench

https://github.com/jz10/hip-test_suite


PROGRESS REPORT

• Assess the functionalities of HIPCL/HIPLZ
• Out of 52 tests, 

– 46 (88%) compile without errors
– 40 (77%) compile and run without crashing
– 37 (71%) compile, run without crashing, and 

give the correct answer.
• Main causes of failure:

– cmake integration being out of date with 
AMD HIP’s cmake 

– not all functions implemented yet, such 
as __shfl (3 argument version)

• Kokkos now compiles, thanks to new 
hipMemcpyToSymbol, etc. implementations!

Test Suite
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$ git clone \
https://github.com/jz10/hip-test_suite.git
 
$ cd hip-test_suite 
$ ./run_tests.sh 

https://github.com/jz10/hip-test_suite.git


TEST SUITE RESULTS
Test Build Run Correct Answer 

BabelStream Y Y Y 

cs-roofline-toolkit Y Y Y 

cholla N 

KokkosDslash N 

su3_bench Y Y Y 

BerkeleyGW-FF N 

BerkeleyGW-GPP Y N 

add4 Y Y Y 

cuda-stream Y Y Y 

gpu-burn Y Y 

mini-nbody Y Y Y 

reduction Y Y Y 

rodinia_3.0 (18 tests) N N N 

rtm8 Y Y Y 

strided-access Y Y Y 

vectorAdd Y Y Y 

GPU-STREAM Y Y 
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Test Build Run Correct Answer 
mixbench Y Y Y 

BinomialOption Y Y Y 

BitonicSort Y Y Y 

FastWalshTransform Y Y Y 

FloydWarshall Y Y Y 

HelloWorld Y Y 

Histogram Y Y Y 

MatrixMultiplication Y Y Y 

PrefixSum Y Y Y 

RecursiveGaussian Y Y Y 

SimpleConvolution Y Y Y 

dct Y Y Y 

dwtHaar1D Y Y Y 

kokkos N 

raja N 

adept-proxy N 

occa Y N 



• Empirical roofline toolkit
– Empirically measures bandwidth 

and peak performance

• Su3_bench microbenchmark
– Kernel based on the SU(3) 

routine in the MILC Lattice 
Quantum Chromodynamics code
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HIGHLIGHTS: HIPCL AND HIPLZ ON INTEL GEN9

DRAM Bandwidth 
(GB/s)

FP64 peak 
(Gflop/s)

FP32 peak 
(Gflop/s)

HIPCL 25.48 301.66 1235.39
OpenCL 25.77 299.12 1184.91
HIPLZ 25.84 303.22 1240.69

Total execution 
time (s) Total GFLOP/s Total GByte/s 

(GPU)

HIPCL 30.26 29.93 22.17
OpenCL 31.59 28.67 21.24
HIPLZ 31.46 28.79 21.32
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HIP RESTRUCTURING BY AMD
• HIP Restructuring Objectives:

– Allow independent backends in HIP,
– Allow new backends to leverage CI tests,
– Create a test suite derived from the HIPLZ test suite.

• HIP Restructuring:
– HIP has been split into a common repository, and an AMD specific backend 

repository
– CI tests have been reworked to allow running them in different environement
– HIP test suit available on GitHub
– hipcc and hipConfig have been ported to C++ and provide a plugin 

mechanism to extend to new backends
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THE CHIP-SPV PROJECT

• Two distinct aspect
– Upstream necessary front-end compiler modifications into Clang/LLVM
– Create unified back-end supporting OpenCL and Level-Zero

• Front-end upstreaming:
– Necessary patches are live in Clang14, adding a SPIR-V target to the LLVM/Clang HIP frontend
– Relies on the spirv-llvm translator, but is ready to use the SPIR-V LLVM backend once it arrives

• CHIP-SPV backend (https://github.com/CHIP-SPV):
– New passes added to diminish reliance on extensions and provide new functionalities

– Global variables
– Textures
– printf, abort

– Unified OpenCL and Level-Zero behind a common abstraction layer
– Switching between Level-Zero and OpenCL can be done at runtime
– 80 % pass rate on HIP unit tests

Compiler and Back-End
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https://github.com/CHIP-SPV


CHIP-SPV COMPONENTS
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Name Description Open Source Origin Maintainer

HIP Frontend LLVM HIP Frontend Yes (GitHub) AMD LLVM/Clang + AMD

HIPSPV HIP LLVM/Clang SPIR-V 
compiler backend

Yes (GitHub) HIPCL/HIPLZ LLVM/Clang

LLVM/SPIR-V Translator Translation layer Yes (GitHub) Khronos Khronos

HIP Common HIP Frontend + CI + Tools Yes (GitHub) AMD/HIPLZ AMD

HIP Test Suite Test suite of HIP 
applications

Yes (GitHub) AMD/HIPLZ AMD

IGC Intel Graphics Compiler Yes (GitHub) Intel Intel

Level Zero Intel new Runtime API Yes (GitHub) Intel Intel

CHIP-SPV New HIP backend for Intel 
GPUs

Yes (GitHub) HIPCL/HIPLZ ALCF



NEXT STEPS

• Continue the upstreaming work
– Implement new HIP features as they are adopted
– Continue pushing patches to LLVM (add required passes as they mature)
– Continue the test suite work and HIP refactoring

• Find full-fledged HIP applications, identify gaps, and close them:
– Implement missing runtime feature for applications
– Solve compiler related gaps
– Work on enabling required math libraries on top of oneAPI

• Investigate CHIP-SPV as a CUDA backend

Real Application Support
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CONCLUSION

• oneAPI and Level-Zero allowed:
– Porting most features of HIP to Intel GPUs,
– Leveraging existing oneAPI libraries,
– While maintaining great performance.

• SPIR-V support enabled:
– Leveraging Khronos tools,
– The work to be upstreamed in LLVM,
– Interchangeable Level-Zero and OpenCL backends,
– Interest from other OpenCL vendors.

oneAPI with SPIRV Support is an Awesome Portability Platform
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PERSPECTIVES

• Continues removing portability obstacles:
– New SPIR-V and OpenCL extensions are being written (printf, abort),
– Working with Intel to ease writing runtimes on top of Level-Zero,
– Identify and close gaps in oneAPI math libraries functionalities and 

performances vs HIP equivalents.
• Investigate real applications:

– ECP applications,
– Anyone interested in running specific HIP applications on Intel GPUs?

• SPIR-V LLVM backend in Clang15
• Investigate CUDA on SPIR-V backend using Clang toolc-chain

Convergence of Heterogeneous Programming Models
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