
Enabling AI & HPC to be open, safe and accessible to
all

Performance Portability from Fantasy
to Reality

oneAPI DevSummit for AI and HPC

December 2022

Andrew Richards

© 2022 Codeplay Software Ltd2

Single-core CPUs Multi-core CPUs

System-on-chips
with multiple

optimized cores
for each class of
algorithm and

datatype

Our Brave New World

Great for processor architects, but how do we write the software?

© 2022 Codeplay Software Ltd3

Hand-code
software

specifically
for the

processors
we have?

Use some magical tool

that converts any code

into fast software for

your hardware?
Never use any new or

innovative processors

How do we
write fast
software?

(Your hardware will be obsolete
by the time you have optimized it)

(Only works if your
magical tool has been
pre-programmed to
understand the
software you just
invented)

(Those days
are over)

© 2022 Codeplay Software Ltd4

If only there was a proven, practical,
solution…

(There is, it’s called C++, and it’s very widely used)

© 2022 Codeplay Software Ltd5

1. Zero-cost abstractions
2. Separation of concerns
3. Composability

C++ has 3 key concepts that enable it to
support development of very large, very high

performance software

© 2022 Codeplay Software Ltd6

Starting simple: writing a parallel loop

void serial_f (float *out,
const float *in,
int size) {

for (int i=0; i<n; i++) {
out [i] = f (in [i]);

}
}

void parallel_f (float *out,
const float *in,
int size) {

#pragma this_loop_is_parallel
for (int i=0; i<n; i++) {

out [i] = f (in [i]);
}

}

void explicit_parallel_f (float *out,
const float *in,
int size) {

parallel_for (0, n, [=] (int i) {
out [i] = f (in [i]);

});
}

1. We could write a serial loop & hope the
compiler parallelizes it

2. We could write a serial loop & tell the
compiler to parallelize it

3. We could write a parallel loop in C++

Why would we do it like this?
Þwe told the compiler what we want
Þnow we have complete control
Þwe can now parallelize very complex software
Þnow, when we debug the software, it behaves

exactly the way we told it to behaveThis is a C++ zero-cost-abstraction

© 2022 Codeplay Software Ltd7

Writing a parallel loop by hand
void parallel_part_f (float *out,

const float *in,
int start,
int end) {

for (int i=start; i<end; i++) {
out [i] = f (in [i]);

}
}

void parallel_threads_f (float *out,
const float *in,
int size) {

int part = size / num_cores;
for (int i=0; i<size; i+=part) {

create_thread (parallel_part_f,
out, in, i,
min (size, i + part);

}
wait_for_threads_to_complete ();

}

4. Or, we could write the whole thing by hand

Why would we do it like this?
Þwe don’t want to maintain this software on

multiple platforms
Þwe want to learn how multi-threading works

© 2022 Codeplay Software Ltd8

Which of those 4 methods is faster?

(Answer #1: the serial loop is fastest, because I didn’t tell you that n is 3)

© 2022 Codeplay Software Ltd9

1. Performance varies by the size of the data
2. Performance varies by the underlying hardware
3. Performance varies by where the data is
4. Performance varies by what else is running (or could be

running) at the same time in the same system

Lesson: The fastest algorithm varies
Your compiler can’t know any of this

Your optimized libraries can’t know any of this

© 2022 Codeplay Software Ltd10

Who knows the answers?
The only person who knows: the size of the data; the

hardware it’s running on; where the data is, and what else
is running on the system is:

The user!

I’ve written a ten million
line program:

Parallelize it yourself

{…}

© 2022 Codeplay Software Ltd11

How do we provide: programs, libraries &
tools that can be parallelized and optimized

on different systems?
We separate the concerns: This is a key modern C++ concept

How the data is
stored

Processor-specific
optimizations

The algorithm we
will use to

calculate the
answer

What we want
the software to

do

We can then independently choose: the algorithm, the optimizations,
which processor each task runs on, how we store the data

© 2022 Codeplay Software Ltd12

How do we optimize a program where we
have Separated the Concerns?

Easy: we run it with all the different options and see which runs fastest!

We break down the optimization problem into three stages:
1. Writing optimized algorithms, data structures, kernels, schedules
2. Writing our software in a way where we can switch between the

different algorithms, data structures, kernels, schedules
3. Choosing the best options for each for the problem we want to solve

© 2022 Codeplay Software Ltd13

But how do we integrate all the components?
C++ has an answer for this, too: composability

• If we write C++ libraries carefully, we can combine them together with user-written code
• If we want to compose across: data formats, different algorithms, different processors,

user customization, scheduling, then:
• We need to have the C++ in the same compilation unit, even for different

processor cores
• We call this C++ single-source and it’s crucial for making this work on

today’s heterogeneous multi-core processors

© 2022 Codeplay Software Ltd14

This seems like an impossibly big task
But we’ve already done a lot of the work!

There are already several C++
libraries that enable this:
• Kokkos
• Raja
• Eigen
• SYCL-BLAS, SYCL-DNN

There are already C++ single-source
compilers & standards to do this:
• ISO C++ Parallel STL
• CUDA, HIP
• SYCL – standard for heterogeneous devices
• C++ with OpenMP/OpenACC
• ComputeCpp, DPC++, triSYCL:

implementations of SYCL

There are already applications
doing this:
• TensorFlow
• A lot of videogame engines

There are already accelerators
supporting this:
• Most CPUs – out of the box C++
• NVIDIA GPUs – CUDA (& SYCL)
• AMD GPUs – HIP (& SYCL)
• Intel GPUs – DPC++/SYCL

• Renesas R-Car - SYCL
• Imagination Technologies GPUs - SYCL
• ARM Mali GPUs – SYCL
• Intel FPGAs – DPC++/SYCL

© 2022 Codeplay Software Ltd15

© 2022 Codeplay Software Ltd16

• SYCL is a royalty-free vendor-neutral industry standard C++ for
parallel software and accelerator processors
• SYCL takes proven C++ performance ideas & super-charges

them for a heterogeneous processing world
• Now we can:
• Build our own C++ SYCL compilers for a variety of new processors
• We can design our own optimizations
• We can build C++ libraries that can adapt to the performance requirements of

lots of different systems
• We can integrate native compilation for different processors in one source file

What is SYCL?

© 2022 Codeplay Software Ltd17

cgh.parallel_for<class parallel_demo> (
cl::sycl::range<1>(n),

[=](cl::sycl::item<1> i)

{

out [i] = f (in [i]);

});

• By default, a SYCL parallel_for
can run entirely parallel
• We define a range to execute in

parallel over
• We use a C++ lambda to define the

loop body as that’s standard now
• It is the job of the programmer to

ensure ‘f’ is safe to run in parallel
• The loop is enqueued and run

asynchronously to the CPU thread
• The parallel loop can execute on any

SYCL supported core: CPU, GPU, FPGA,
DSP, anything programmable

How SYCL handles parallelism

For more complex parallelism where
there are scheduling dependencies,
there are a range of options: SYCL

requires you to specify where your code
isn’t parallel

© 2022 Codeplay Software Ltd18

auto in = inp.get_access<cl::sycl::access::mode::read>(cgh);
auto out = outp.get_access<cl::sycl::access::mode::read_write>(cgh);

cgh.parallel_for<class parallel_demo> (

cl::sycl::range<1>(n),

[=](cl::sycl::item<1> i)

{

out [i] = f (in [i]);
});

Performance on accelerators is more about data access than compute:

• GPUs have on-board HBM memory and a small amount of fast on-chip SRAM
• DSPs use DMA to transfer data rapidly to a larger amount of on-chip SRAM
• AI accelerators usually have a lot of fast on-chip SRAM
SYCL requires developer specify how to access data: enables maximum performance

How SYCL handles data access
Access mode
specified

© 2022 Codeplay Software Ltd19

gpu_queue.submit([&](cl::sycl::handler &cgh) {
auto in = inp.get_access<cl::sycl::access::mode::read>(cgh);

auto out = outp.get_access<cl::sycl::access::mode::read_write>(cgh);

cgh.parallel_for<class parallel_demo> (

cl::sycl::range<1>(n),

[=](cl::sycl::item<1> i)

{
out [i] = f (in [i]);

});

});

• Both host & device code are compiled via C++ native compilers
• When SYCL goes through OpenCL, it can (optionally) use SPIR-V as the compiler IR

Ø But it’s still C++ source compiled to native device ISA
• SYCL device compilers can have per-device extensions
• More than one device compiler can compile a single source file

How SYCL handles multiple, different, processors

SYCL Device Compiler extracts this
kernel and compiles it natively for
accelerator processors

Compiled for CPU
by any normal
CPU C++ compiler
& runs
asynchronously on
host CPU to
enqueue kernels to
accelerator

This kernel ‘name’
allows multiple C++
compilers to be
stitched together

Combines the
benefits of chosen
CPU compiler and

chosen device
compiler

© 2022 Codeplay Software Ltd20

• Most vector instructions and memory models map to SYCL 1.2.1 today
• New instructions or memory systems can be mapped to SYCL

extensions – there’s a clear mechanism for this

• Then, these processor-specific performance features are integrated
into the template libraries in an appropriate place
ØThe aim is to enable processor-specific optimizations in the least disruptive way possible
ØEnables us to run the same software with high performance on lots of different processors

How SYCL handles processor-specific
optimizations

© 2022 Codeplay Software Ltd21

Independent SYCL benchmarking

BabelStream

Memory transfer measurement

https://github.com/UoB-HPC/BabelStream

Parallel Research Kernels

A range of parallel kernel
operations

https://github.com/ParRes/Kernels

RSBench

A key computational kernel of the
monte carlo neutron transport

algorithm

https://github.com/ANL-CESAR/RSBench

SYCLDSlash

Wilson Dslash Stencil Operator
implementation

https://github.com/bjoo/SyCLDslash

HeCBench

A range of kernels for
heterogenous computing

https://github.com/zjin-lcf/HeCBench

SYCL-Bench

A range of performance
benchmarks

https://github.com/bcosenza/sycl-bench

https://www.cosenza.eu/papers/LalEUROP
AR20.pdf

https://github.com/UoB-HPC/BabelStream
https://github.com/ParRes/Kernels
https://github.com/ANL-CESAR/RSBench
https://github.com/bjoo/SyCLDslash
https://github.com/zjin-lcf/HeCBench
https://github.com/bcosenza/sycl-bench

© 2022 Codeplay Software Ltd22

NVIDIA
• Nvprof and Nsight can be used in

the same way with Nvidia GPUs

SYCL with Hardware-Specific Profiling Tools
Intel
• Vtune can be used for Intel GPUs

and CPUs

© 2022 Codeplay Software Ltd23

• oneAPI/DPC++ - Intel/Codeplay: new open governance
• Open-source, very active development
• Intel GPU, NVIDIA GPU, Intel FPGA support released so far

• hipSYCL – Heidelberg University
• Open-source active development
• AMD/NVIDIA GPUs: doesn’t go through OpenCL

• ComputeCpp - Codeplay
• Closed-source. Community Edition free. Professional Edition fully-supported
• Supports OpenCL SPIR-V processors (ARM GPU, Renesas R-Car, PowerVR GPU,

Intel GPU, +add your own)
• triSYCL - Xilinx
• Open-source, less active development now

Using SYCL today

Check out the growing
SYCL ecosystem at

sycl.tech & the growing
oneAPI ecosystem

© 2022 Codeplay Software Ltd24

But, you promised a magic compiler that
optimizes everything for me!

© 2022 Codeplay Software Ltd25

How compilers work

• We transform a language
into an intermediate
representation which
contains a simplified
representation of our
code

• We do this because it’s
much easier to transform
an IR with passesHardware

Compiler back-
end

Intermediate
Representation

(‘IR’)

Language (e.g.
C++)

Compiler
front-end

Optimization
passes

Code
generation

CPU ISA

© 2022 Codeplay Software Ltd26

Hardware

Compiler back-end

Intermediate
Representation

(‘IR’)

Language (e.g.
C++)

Compiler
front-end

Optimization
passes

CPU code
generation

CPU ISA

Data flow
analysis

Runtime:
DMA/sync

Accelerator
code

generation

Accelerator
ISA

How heterogeneous compilers work

• We now need to create
code for 2 (or more)
processors
• 2+ compiler back-ends

• And we also need to
transfer data and
synchronize
• We have a runtime

© 2022 Codeplay Software Ltd27

•MLIR lets us do
different
optimizations at
different levels
• Enables

optimizations for
different hardware

Multi-Level Intermediate Representation (MLIR)

Hardware

Compiler back-
end

Low-level IR

High level IR

Language (e.g.
C++)

Compiler
front-end

High level
optimization

passes

CPU
optimization

passes

Code
generation

CPU ISA

Data flow
optimizations

Scheduler

Runtime:
DMA/sync

Accelerator
optimization

passes

Code
generation

ISA #2

© 2022 Codeplay Software Ltd28

Source code

Compiler

Compiler-
specific IR

CPU back-
end

SPIR-V

GPU back-
end

CPU back-
end

Any new
accelerator
back-end

SPIR-V

• SPIR-V is a standardized compiler
IR for accelerators, such as GPUs

Now you can write
your own domain-
specific compiler +

integrate it with
other hardware &

software

© 2022 Codeplay Software Ltd29

What now?

© 2022 Codeplay Software Ltd30

• We’re building out this open ecosystem together
• Join the oneAPI Community Forum to help drive the ecosystem
• Join the Khronos SYCL working group to drive the programming model
• Build performance-portable C++ frameworks
• Use these frameworks & techniques in your projects

What now?

Enabling AI to be open, safe and accessible to all

Notices & Disclaimers
Performance varies by use, configuration and other factors.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No
product or component can be absolutely secure.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be
claimed as the property of others.

