JU e 13 2023 ‘ ;Ei%%fr%g#g
i
SEIT 1386

hipSYCL's quest for universal SYCL binaries
One binary from NVIDIA and AMD to Intel Data Center GPU Max Series

Aksel Alpay
Heidelberg University



Introduction: Universal binaries with SYCL?

Review of current SYCL compilation models

hipSYCL's new compiler: Designed for universal binaries

How it works

Results

Conclusion

2/22



Universal binaries with SYCL? '

» What if SYCL binaries need to be deployed and run on systems with unknown
hardware configuration?
» Usually not important for HPC
» ...butcentral e.g. for vendors of software who want to distribute binaries to their end

users!
» |n this case, a single (“universal”) binary needs to be able to run on whatever
hardware is available on the target system.

» How is this adressed in current SYCL implementations?

3/22



Review of current SYCL compilation models

4/22



Sketch of clang/LLVM architecture

Compiler Frontend
(clang)

Parsing
Source code Lexical/Syntax Codegen
/Semantic Analysis

Intermediate
representation (IR)

. Backend codegen for P
Binary (— targot (— Optimization (—I

Compiler Backend
(LLVM)

How can this be extended to heterogeneous architectures, and create binaries that
run not only on CPU, but also on e.g. GPU?

5/22



SMCP (Single-source, multi- 'wm
ple compiler passes)

SYCL code —~){ Device compiler H Binary for target 1
~>{ Device compiler H Binary for target 2
~>{ Device compiler H

\ 4

~>‘ Host compiler > Host binary

» Each compiler invocation parses code again, and emits a binary in a
backend-specific format

» All SYCL implementations, and almost all heterogeneous compilers (e.g. nvce)
use this model

6/22



UNIVERSITAT

SMCP t
ro u e ZUKUNFT
SEIT 1386

» Parsing modern C++ code is expensive

» As we add more backends and support for more hardware, compile times do not
scale well!

» Some backends (ROCm) do not have an intermediate format — every GPU needs
to be targeted explicitly

» Creating a binary using SMCP that runs on all hardware supported by hipSYCL
requires roughly 40 compilation passes...(similarly for e.g. DPC++)

» Very difficult (impractical?) to create a SYCL binary that “just runs” on any
GPU

Portable interchange formats (e.g. SPIR-V) to the rescue?

» Not universally supported

» Still want interop with backend-specific libraries, and hence need to rely on
vendor-specific SYCL backends (e.g. CUDA/HIP) which rely on their own device

binary format
7122



hipSYCL's new compiler: Designed for universal binaries

8/22



UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

A brand-new compiler for ‘
hipSYCL

» First SYCL compiler with unified code representation across backends (Single

device binary embedded in the application that is shared across CUDA, ROCm,
Level Zero backends)

» First single-pass SYCL compiler (source is only parsed once, unified compiler
that generates both host and device code)

NVIDIA GPUs

AMD GPUS All developments are publicly available
— as part of the hipSYCL SYCL implemen-
Level Zero Intel GPUs tation .

OpenMP-+dedicated

o x86-64/arm/ppc64le!...
compiler

9/22



SSCP (Single-source, single ' e
compiler pass)

ZUKUNFT
SEIT1386

Device binary

SYCL code *)[ Unified compiler J—)[ IR

Host binary

» Code is only parsed once — allows for faster compile times
» Not a new idea, but rarely used: Only major production compiler: NVIDIA nvc++.
» Until now, this has not been done in a stand-alone SYCL compiler.
Embedded device binary follows a generic code representation!
» Analyses/Optimizations such as kernel fusion can be implemented in a
backend-independent way — accelerated development!
» Clear path to extend hipSYCL support to new hardware

10/22



How it works
Alpay A., Heuveline V. 2023. One Pass to Bind Them: The First Single-Pass SYCL Compiler with Unified
Code Representation Across Backends. IWOCL'23. https://doi.org/10.1145/3585341.3585351

Details in the paper!

11/22



General overview '

Stage 1
» Typically happens at compile time (target device not yet known)
» During regular host compilation, identify & extract kernels IR from host IR
» Make sure LLVM IR does not contain target-specific hints/builtin calls/...
» Embed LLVM IR bitcode for kernels in host application

Stage 2
» Typically happens at runtime (target device known)

» Take generic LLVM IR and compile to backend-specific format for device we
want to run on (e.g. NVIDIA PTX)

» Optimize

12/22



Code specialization via con- '
trol flow

We need to be able to have different code paths for host/device or different device
targets

» Users may want to create dedicated target-optimized code paths
» Implementation needs to figure out how to map e.g. builtins.

» SYCL specification: If you use SMCP, you must define __SYCL_DEVICE_ONLY__
macro in the device pass

Macros cannot be used with SSCP for this, because code is only parsed once!

13/22



double sin(double x) {
2 if (__hipsycl_sscp_is_device) {

3 return __device_sin(x);
4 } else {
5 return std::sin(x);

}

» __hipsycl_sscp_is_device iS an IR constant
» There are IR constants for stage 1 and stage 2 compilation. Stage 2 IR constants
can also be added by the user.
» Since IR constants are seen as constants for the optimizer, additional dead code
elimination passes removes unneded branches
No branches will be in compiled code anymore!
IR constants: Global variable, which is not a C++ constant, but will be turned into
a constant by the compiler in LLVM IR, and initialized with a value that is not known
yet when code is parsed.

14/22



Current support

» NVIDIA, Intel, AMD GPUs. CPUs are planned.

» Not all SYCL functionality is supported yet

» Group algorithms (WIP)
» SYCL 2020 reductions
» Some extensions

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT1386

15/22



Results

Hardware:
» System 1: AMD Ryzen 7 4750U APU, 32GB RAM, Arch Linux

» System 2: Intel Core i7 8550U CPU with iGPU, 16GB RAM, NVIDIA GeForce
MX150 GPU, Ubuntu 22.04

» System 3: Intel Core i7 8700 CPU, 64GB RAM, AMD Radeon Pro VII GPU,
Ubuntu 20.04

Benchmarks:
» BabelStream (memory benchmarks [Deakin et al. (2016)1)
» CloverlLeaf (2D hydrodynamics mini-app [Deakin et al. (2020)1)
» miniBUDE (molecular docking mini-app [Poenaru et al. (2021)1)
» RSBench/XSBench (monte-carlo neutron transport mini-apps [Tramm et al. (2014)1)

16/22



UNIVERSITAT
HEIDELBERG
FT

Compile Time: BabelStream ‘

SEIT1386

host,generic vs other hipSYCL compilation flows  p. Generic SSCP compiler

only ~ 20% slower than
a regular clang host
compilation

» This overhead is due to
clang OpenMP frontend,
disable using
-fno-openmp

» Note: the other
compilation flows are
slower, while targeting
less hardware!

B
o
L

w
o
L

N
o
L

=
o
L

Compile time for BabelStream [s]

o
L

17/22



But have you just moved com- ' st
pile times to runtime?

» Previous SYCL compilers might do more work then necessary, since all device
images for all backends need to be created ahead-of-time, but not all might be
needed on the machine of the user

» Stage 2 compilation does not require parsing the code, so parsing costs have
been removed

» Note that even in SYCL implementations today there is already runtime
compilation taking place!
» Drivers need to translate backend-specific IRs like PTX, SPIR-V to machine code
» SYCL applications need to already expect runtime compilation overheads and
deal with this today!
» Our additional runtime compilation logic can be expected to add around 0.2x to 1x
of the existing runtime compilation overheads to the first kernel invocation
» Existing strategies in SYCL apps to deal with overheads at the first kernel invocation
will likely still work.
18/22



Performance

1.2

Perf. normalized to SMCP model

Normalized performance

1.04

0.8

0.6 4

m

B Intel Core i7-8550U (iGPU)
mmm NVIDIA GeForce MX150

© AMD Ryzen 4750U APU (GPU)
B AMD Radeon Pro Vil

>

| 2

UNIVERSITAT
HEIDELBERG
zi FT
SEIT1386

‘ £

Performance within
-13% to +27%

Intel results are
normalized to DPC++
perf, since the old
hipSYCL SMCP SPIR-V
compiler was too
immature

Note: Development focus so far was functionality, not performance!

19/22



Also works on Intel Data Cen- ‘
ter GPU Max Series devices!

Perf. on Intel Data Center GPU Max 1550

» Only short amount of
O time available during
£ 081 SYCL hackathon @
Foe] IWOCL
5 oa ] » Performance within few
ozl percents
00 » Unclear if differences are
S S > & o
SO S 8 even due to the

generated code

Not a single line of code had to be changed in hipSYCL — the power of open standards!
(Level Zero/SPIR-V)

20/22



. UNIVERSITAT

HEIDELBERG
Conclusion T
SEIT 1386

hipSYCL's generic single-pass compiler delivers significantly lower compile times
(especially when targeting multiple backends/devices) and instant binary
portability, while retaining performance.

Single binary that can adapt its embedded kernel code based on the hardware it
finds on the system

That one binary can then be executed on NVIDIA, AMD and Intel GPUs -
including Intel Data Center GPU Max Series devices!

Robust platform to extend hipSYCL to new hardware, or implement features like
profile guided optimizations, kernel fusion, ...in a backend-independent manner

Publicly available & works today even with complex applications like CloverlLeaf
Super easy to use: Just compile with --hipsycl-targets=generic

21/22



What's left to do? ‘

» For users: Install hipSYCL and try it out today! Give feedback!

» For academics and compiler engineers: Read the paper! Alpay A., Heuveline V. 2023.
One Pass to Bind Them: The First Single-Pass SYCL Compiler with Unified Code Representation
Across Backends. IWOCL'23. https://doi.org/10.1145/3585341.3585351

» Reach out!

» aksel.alpayQuni-heidelberg.de
» @illuhad on Twitter & Reddit, @i11uhad@mastodon.world on Mastodon.

» hipSYCL is now the first generic single-pass SYCL implementation! One
compiler pass, one binary, all the devices.

22/22



	Introduction: Universal binaries with SYCL?
	Review of current SYCL compilation models
	hipSYCL's new compiler: Designed for universal binaries
	How it works
	Results
	Conclusion

