
June 13, 2023

hipSYCL’s quest for universal SYCL binaries
One binary from NVIDIA and AMD to Intel Data Center GPU Max Series

Aksel Alpay
Heidelberg University



Introduction: Universal binaries with SYCL?

Review of current SYCL compilation models

hipSYCL’s new compiler: Designed for universal binaries

How it works

Results

Conclusion

2 / 22



Universal binaries with SYCL?

▶ What if SYCL binaries need to be deployed and run on systems with unknown
hardware configuration?
▶ Usually not important for HPC
▶ …but central e.g. for vendors of software who want to distribute binaries to their end

users!
▶ In this case, a single (“universal”) binary needs to be able to run on whatever

hardware is available on the target system.

▶ How is this adressed in current SYCL implementations?

3 / 22



Review of current SYCL compilation models

4 / 22



Sketch of clang/LLVM architecture

How can this be extended to heterogeneous architectures, and create binaries that
run not only on CPU, but also on e.g. GPU?

5 / 22



SMCP (Single-source, multi-
ple compiler passes)

▶ Each compiler invocation parses code again, and emits a binary in a
backend-specific format

▶ All SYCL implementations, and almost all heterogeneous compilers (e.g. nvcc)
use this model

6 / 22



SMCP trouble

▶ Parsing modern C++ code is expensive
▶ As we add more backends and support for more hardware, compile times do not

scale well!
▶ Some backends (ROCm) do not have an intermediate format – every GPU needs

to be targeted explicitly
▶ Creating a binary using SMCP that runs on all hardware supported by hipSYCL

requires roughly 40 compilation passes…(similarly for e.g. DPC++)
▶ Very difficult (impractical?) to create a SYCL binary that “just runs” on any

GPU
Portable interchange formats (e.g. SPIR-V) to the rescue?
▶ Not universally supported
▶ Still want interop with backend-specific libraries, and hence need to rely on

vendor-specific SYCL backends (e.g. CUDA/HIP) which rely on their own device
binary format

7 / 22



hipSYCL’s new compiler: Designed for universal binaries

8 / 22



A brand-new compiler for
hipSYCL

▶ First SYCL compiler with unified code representation across backends (Single
device binary embedded in the application that is shared across CUDA, ROCm,
Level Zero backends)

▶ First single-pass SYCL compiler (source is only parsed once, unified compiler
that generates both host and device code)

All developments are publicly available
as part of the hipSYCL SYCL implemen-
tation.

9 / 22



SSCP (Single-source, single
compiler pass)

▶ Code is only parsed once – allows for faster compile times
▶ Not a new idea, but rarely used: Only major production compiler: NVIDIA nvc++.
▶ Until now, this has not been done in a stand-alone SYCL compiler.

Embedded device binary follows a generic code representation!
▶ Analyses/Optimizations such as kernel fusion can be implemented in a

backend-independent way – accelerated development!
▶ Clear path to extend hipSYCL support to new hardware

10 / 22



How it works
Alpay A., Heuveline V. 2023. One Pass to Bind Them: The First Single-Pass SYCL Compiler with Unified

Code Representation Across Backends. IWOCL’23. https://doi.org/10.1145/3585341.3585351

Details in the paper!

11 / 22



General overview

Stage 1
▶ Typically happens at compile time (target device not yet known)
▶ During regular host compilation, identify & extract kernels IR from host IR
▶ Make sure LLVM IR does not contain target-specific hints/builtin calls/…
▶ Embed LLVM IR bitcode for kernels in host application

Stage 2
▶ Typically happens at runtime (target device known)
▶ Take generic LLVM IR and compile to backend-specific format for device we

want to run on (e.g. NVIDIA PTX)
▶ Optimize

12 / 22



Code specialization via con-
trol flow

We need to be able to have different code paths for host/device or different device
targets
▶ Users may want to create dedicated target-optimized code paths
▶ Implementation needs to figure out how to map e.g. builtins.
▶ SYCL specification: If you use SMCP, you must define __SYCL_DEVICE_ONLY__

macro in the device pass

Macros cannot be used with SSCP for this, because code is only parsed once!

13 / 22



1 double sin(double x) {
2 if(__hipsycl_sscp_is_device) {
3 return __device_sin(x);
4 } else {
5 return std::sin(x);
6 }
7 }

▶ __hipsycl_sscp_is_device is an IR constant
▶ There are IR constants for stage 1 and stage 2 compilation. Stage 2 IR constants

can also be added by the user.
▶ Since IR constants are seen as constants for the optimizer, additional dead code

elimination passes removes unneded branches

No branches will be in compiled code anymore!
IR constants: Global variable, which is not a C++ constant, but will be turned into
a constant by the compiler in LLVM IR, and initialized with a value that is not known
yet when code is parsed.

14 / 22



Current support

▶ NVIDIA, Intel, AMD GPUs. CPUs are planned.
▶ Not all SYCL functionality is supported yet

▶ Group algorithms (WIP)
▶ SYCL 2020 reductions
▶ Some extensions

15 / 22



Results

Hardware:
▶ System 1: AMD Ryzen 7 4750U APU, 32GB RAM, Arch Linux
▶ System 2: Intel Core i7 8550U CPU with iGPU, 16GB RAM, NVIDIA GeForce

MX150 GPU, Ubuntu 22.04
▶ System 3: Intel Core i7 8700 CPU, 64GB RAM, AMD Radeon Pro VII GPU,

Ubuntu 20.04

Benchmarks:
▶ BabelStream (memory benchmarks [Deakin et al. (2016)])
▶ CloverLeaf (2D hydrodynamics mini-app [Deakin et al. (2020)])
▶ miniBUDE (molecular docking mini-app [Poenaru et al. (2021)])
▶ RSBench/XSBench (monte-carlo neutron transport mini-apps [Tramm et al. (2014)])

16 / 22



Compile Time: BabelStream

host,generic vs other hipSYCL compilation flows ▶ Generic SSCP compiler
only ≈ 20% slower than
a regular clang host
compilation

▶ This overhead is due to
clang OpenMP frontend,
disable using
-fno-openmp

▶ Note: the other
compilation flows are
slower, while targeting
less hardware!

17 / 22



But have you just moved com-
pile times to runtime?

▶ Previous SYCL compilers might do more work then necessary, since all device
images for all backends need to be created ahead-of-time, but not all might be
needed on the machine of the user

▶ Stage 2 compilation does not require parsing the code, so parsing costs have
been removed

▶ Note that even in SYCL implementations today there is already runtime
compilation taking place!
▶ Drivers need to translate backend-specific IRs like PTX, SPIR-V to machine code
▶ SYCL applications need to already expect runtime compilation overheads and

deal with this today!
▶ Our additional runtime compilation logic can be expected to add around 0.2× to 1×

of the existing runtime compilation overheads to the first kernel invocation
▶ Existing strategies in SYCL apps to deal with overheads at the first kernel invocation

will likely still work.
18 / 22



Performance

▶ Performance within
-13% to +27%

▶ Intel results are
normalized to DPC++
perf, since the old
hipSYCL SMCP SPIR-V
compiler was too
immature

Note: Development focus so far was functionality, not performance!
19 / 22



Also works on Intel Data Cen-
ter GPU Max Series devices!

▶ Only short amount of
time available during
SYCL hackathon @
IWOCL

▶ Performance within few
percents

▶ Unclear if differences are
even due to the
generated code

Not a single line of code had to be changed in hipSYCL – the power of open standards!
(Level Zero/SPIR-V)

20 / 22



Conclusion

▶ hipSYCL’s generic single-pass compiler delivers significantly lower compile times
(especially when targeting multiple backends/devices) and instant binary
portability, while retaining performance.

▶ Single binary that can adapt its embedded kernel code based on the hardware it
finds on the system

▶ That one binary can then be executed on NVIDIA, AMD and Intel GPUs -
including Intel Data Center GPU Max Series devices!

▶ Robust platform to extend hipSYCL to new hardware, or implement features like
profile guided optimizations, kernel fusion, …in a backend-independent manner

▶ Publicly available & works today even with complex applications like CloverLeaf
▶ Super easy to use: Just compile with --hipsycl-targets=generic

21 / 22



What’s left to do?

▶ For users: Install hipSYCL and try it out today! Give feedback!
▶ For academics and compiler engineers: Read the paper! Alpay A., Heuveline V. 2023.

One Pass to Bind Them: The First Single-Pass SYCL Compiler with Unified Code Representation

Across Backends. IWOCL’23. https://doi.org/10.1145/3585341.3585351

▶ Reach out!
▶ aksel.alpay@uni-heidelberg.de
▶ @illuhad on Twitter & Reddit, @illuhad@mastodon.world on Mastodon.

▶ hipSYCL is now the first generic single-pass SYCL implementation! One
compiler pass, one binary, all the devices.

22 / 22


	Introduction: Universal binaries with SYCL?
	Review of current SYCL compilation models
	hipSYCL's new compiler: Designed for universal binaries
	How it works
	Results
	Conclusion

