
Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

Nicole Huesman: Welcome to Code Together, an interview series exploring the possibilities of cross-
architecture development with those who live it. I’m your host, Nicole Huesman.

In earlier episodes, we’ve talked about the need to make it easier for developers to build code for
heterogeneous environments in the face of increasingly diverse and data-intensive workloads. And the
industry shift to modern C++ with the C++11 release. Today, we’ll continue that conversation, exploring
parallelism and heterogeneous computing from a user’s perspective with:

Andrew Lumsdaine. As Chief Scientist at the Northwest Institute for Advanced Computing, Andrew
wears at least two hats: Laboratory Fellow at Pacific Northwest National Lab, and Affiliate Professor in
the Paul G. Allen School of Computer Science and Engineering at the University of Washington. By
spanning a university and a national lab, Andrew has the opportunity to work on research questions,
and then translate those results into practice. His primary research interest is High Performance
Computing, with a particular attention to scalable graph algorithms. I should also note that Andrew is a
member of the oneAPI Technical Advisory Board. Andrew, so great to have you with us!

Andrew Lumsdaine: Thank you. It’s great to be here.

Nicole Huesman: And Mike Voss. Mike is a Principal Engineer at Intel, and was the original architect
of the Threading Building Blocks flow graph API, a C++ API for expressing dependency,
streaming and data flow applications. He participates in the ISO C++ standards committee and
is currently evaluating the impact of the C++ executors proposals on Intel’s runtimes and
libraries. He is also co-author of over 40 publications on topics related to parallel programming,
including the recently released book Pro TBB: C++ Parallel Programming with Threading
Building Blocks. Welcome back to the program, Mike!

Mike Voss: Thanks Nicole. Happy to be here.

Nicole Huesman: To get us started, Andrew, can you give us your perspectives on parallelism and C++,
given your deep expertise?

Andrew Lumsdaine: So, I started programming and really doing parallel programming in C before C++
was really in widespread use. And so, in the early days of parallel programming, that really meant high
performance computing scientific codes and so forth, and the reason that people were using parallelism
in that case was for performance—performance was really the most important thing. And
unfortunately, in the very early days of the first attempts of trying to use C++ in that context for
parallelism in high-performance, C++ got this reputation of not being the right language to use, let's say,
for high performance computing. So, there was some skepticism of C++ that continued for some time. I
think it's gone by now, but it was there initially.

For my part, though, as I mentioned, I started working in HPC, started programming in C, and I was also
concerned about performance, but I also saw that HPC programs were not just, quote unquote, codes
anymore, but were becoming large software systems. And so, they really did need to move towards a
programming language like C++ that could provide the kinds of abstractions and interfaces for
constructing large software systems. So, I kind of started on this long path of developing a series of

https://connectedsocialmedia.com/category/code-together/
https://isocpp.org/wiki/faq/cpp11
https://homes.cs.washington.edu/~al75/
https://www.linkedin.com/in/michael-voss-86a85414/
https://www.apress.com/gp/book/9781484243978
https://www.apress.com/gp/book/9781484243978

Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

libraries initially aimed at the HPC community and kind of aimed at showing that abstraction was not
necessarily the enemy of performance. And along the way, I have to give credit where credit is truly due,
I've had the good fortune of working with some incredible graduate students and postdocs: Jeff Squyres,
Todd Veldhuizen, Jeremy Siek, Doug Gregor, Jaako Järvi, Jeremiah Willcock, people know from the C++
community, they all made contributions to these libraries and to C++ along the way. And so, starting
with this first linear algebra library, that matrix template library, we evolved into sparse linear algebra,
and then of course, from sparse linear algebra to graphs and then parallel graphs.

And excuse the pun, along the way, uh, you know, kind of in parallel to those efforts, we also spun off
some of the tools we had developed for that into parts of the C++11 standards. So, variadic templates,
lambda, and my own favorite: enable if. What was interesting and maybe challenging during that was
that there was still this kind of distance between the HPC world and the parallel programming world and
C++. For instance, we contributed C++ bindings to the MPI standard, but those actually have been
removed since they were initially contributed. So, I kind of felt that, you know, I was trying to bridge this
world between the HPC and parallel computing worlds and C++. But things evolve and change and, you
know, mainstream applications started to become more ambitious and needed more performance, and
as clock speeds slowed down or stalled, let's say parallelism and heterogeneity now have become
essential for getting performance. And I think on the side of the HPC and parallel computing, people are
realizing that they need to use a language like C++ that can provide the kinds of, again, abstractions, for
building large systems. And I think by this point, there's this realization that there isn't any longer a
contradiction between abstraction and performance in C++.

Mike Voss: So as Andrew points out, in HPC, the primary goal is performance. It's called high
performance computing, right? But I think it's both this recognition that abstractions are necessary in
large applications and they don't preclude good performance, but also right now, currently there's this
need for heterogeneity. There's a recognition that not only do you need to take advantage of your CPU,
but also these accelerators and there's this tension always. People want to write portable code because
it just saves time and money. But again, the goal is performance. So, we're at this point now where
we're talking about heterogeneity and how exactly do you do this in a performance portable way? And
so, this is why we invite people like Andrew to participate in the [oneAPI] Technical Advisory Board
because we're trying to develop DPC++ and oneAPI as a way to do heterogeneous programming in a
portable way, but being really pragmatic about it.

So, we know that you can't do single source and expect the best performance on each particular target
architecture. We know that if you want the absolute best performance, you're going to have to do
tuning on each architecture, but people like Andrew, they have experience working through these issues
of dealing with abstractions, dealing with C++ libraries, dealing with parallelism. And first of all,
communicating to people that it's not always a bad thing and also are very pragmatic about the need to
still tune. So, bringing people like Andrew into the discussion about oneAPI, this is very important
because it helps us make sure that we are designing interfaces that achieve both goals, portability and
the potential for best performance, if tuning is done.

So, I know that oneAPI has been talked a lot about in these podcasts in the past, but just to reorient
people, if maybe this is their first one that they're listening to. So, when we talk about oneAPI and
DPC++, both of these are standards that we're working with industry partners and academics to define.

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.oneapi.com/
https://github.com/intel/llvm
https://spec.oneapi.com/versions/latest/index.html

Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

We say DPC++, and what that means is actually a combination of things which is ISO C++ plus SYCL,
which is also a standard, plus some extensions. And that is the way that we do direct programming of
accelerators in oneAPI. And then oneAPI also includes some libraries for providing tuned kernels for
applications. So, we have things like oneMKL for math kernels, oneDNN for deep neural networks, and
so on.

So, this is really important that we're doing this all in the open. So, there's spec.oneapi.com where you
can go and actually look at all the specifications. They link to the other ones like C++ and SYCL, all of
these things. We're trying to do it in the open, trying to build a community around it. And that's why
people like Andrew are so important to be a part of this community. I don't know, Andrew, if you want
to talk at all about what the TAB is like, the Technical Advisory Board, and what you think about oneAPI
and DPC++.

Andrew Lumsdaine: Sure. Well, so I'm going to emphasize one thing that you mentioned Mike, about
portability. In some sense that word doesn't really convey the importance of portability because these
days software lives much, much longer than any generation of hardware. I think of hardware, myself,
almost as a disposable or consumable like paper or toner, right? It comes and goes a supercomputer is
not really a capital expense because it's going to be installed and then taken away in three years or four
years and a completely new architecture and the new machine will be installed, you know, whereas an
application, a code, or some programs are going to live, you know, 10, 20 years and through multiple
generations of hardware and even multiple paradigms, so being able to insulate programmers and codes
from these changes in the underlying architectures is just essential for being able to make advances on
the application side. And this in some sense was amplified greatly with the introduction of heterogeneity
into the mix, so now, it wasn't just architectures and so forth might be changing, but even within a single
code at one time, you might have different architectures, different instruction sets and so forth that
your program needs to interact with.

Mike Voss: There are some common patterns though that exist across architectures, like data
parallelism is important, right? Those are the things that you try to leverage, I guess, when you design
some sort of long-lived portable API, right?

Andrew Lumsdaine: Exactly, yeah. And some of the paradigms persist and last across those. There’s
actually an interesting paper that Mary Shaw wrote—I think they even turned it into a small book—
Prospects for an Engineering Discipline of Software, I think was the name of it. And she studied what
happens in different disciplines in terms of how communities evolve from having different ways of trying
to do the same thing, to kind of coalescing around a community, standards, folklore, to actually having
standards. And once you have standards that suddenly puts in a new floor on which you can start to
build the next set of things. And so I think in what we've seen in heterogeneous programming, parallel
programming, is a distillation through, you know, a number of years in the community of what are
common cross-cutting patterns and paradigms, as you mentioned, that can be used in programming
parallel systems and programming heterogeneous systems. And so, you know, having then a standard
like oneAPI, again, that can set a floor on which, you know, the next set of advances can be made is
absolutely essential in our community. And so, I'm happy to participate in that.

https://isocpp.org/std/the-standard
https://www.khronos.org/sycl/
https://github.com/oneapi-src/oneMKL
https://github.com/oneapi-src/oneDNN
https://spec.oneapi.com/versions/latest/index.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/compose/ftp/pdf/shaw_90.pdf

Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

Mike Voss: Another thing I think is helpful is, you know, I'm obviously coming from Intel, but what I
think is useful is that oneAPI as a software ecosystem is being made available now. There was a beta and
now there's gold, the gold release of oneAPI, even though some of the hardware that prompted some of
the players like Intel to be involved is not all there yet. So, I think this is also helpful because like you've
talked about this floor and the standards, this gives something concrete for people to start using even
before maybe the particular piece of hardware that they are interested in is available. So, there's some
things available now, like, I know in early November, there's DevCloud (Intel® DevCloud for oneAPI),
which is the infrastructure that anybody can use to try out oneAPI. So, you can go to DevCloud and try
out oneAPI on different pieces of hardware. And just earlier this month, they did actually add some
nodes that can be publicly accessed that have Intel discrete graphics. So, there's nodes that actually, you
can have dual Intel® Iris® Xe MAX discrete graphics on. So, I think that's helpful too, right?

Andrew Lumsdaine: Absolutely. The term you hear sometimes in this is co-design, right, or I think
maybe co-evolution or so forth that, you know, the hardware and software, but you don't necessarily
want one lagging the other, so having tools available so that applications can be tested, and again, with
the portability, they can be developed now and tested and used on existing platforms and then
hopefully migrated in a straightforward way to the new ones. And I'm going to have to try the DevCloud
with the new Iris GPUs that you mentioned. Now I'm curious to try those out.

Mike Voss: Yeah, so before, they were not available to the general public, but now they are. So, anyone
can go to DevCloud and make a free account and just start using the discrete GPUs that are available.

So, we've talked about oneAPI as a standard and SYCL as a standard. I kind of think the end game
though, is to move all this heterogeneity into C++ proper itself. Currently what's going on there is there’s
a lot of discussion about things like executors, schedulers, just abstractions for execution. So how do you
describe the ‘when’ and the ‘where’ and ‘how’ of execution for, you know, the standard algorithms and
just code, in general, in the standard library as well as, you know, your own code. So, I think that's
probably the end game. One of the challenges, I think in the ISO C++ right now is that maybe the
execution model is not quite there yet. Do you have any thoughts about that, Andrew? Well, first of all,
do you agree? That's where we want to go is have it in C++ and then, you know, what do you think the
challenges are?

Andrew Lumsdaine: No, I definitely agree. I mean, this is in some sense, it's been, you know, my goal
from day one was to have some of these things baked into the standard language and I agree
completely that the big issue, and this might be slightly flippant, but I think, you know, much of the C++
machine model is still a carry-over from C, which was a carry-over from BCPL. And it's basically a PDP-11,
which, you know, has been fine, but obviously things have changed quite a bit in the interim. And so I
think, you know, rethinking the memory model, the execution model of the environments where
programs will be executing will be essential because now we have situations where there are multiple
memory spaces, you have to maybe have different consistency models. And, you know, hopefully this
will also lead to one of my favorite things, real thinking about how true distributed memory will be
incorporated into C++. But yeah, I definitely agree. I think the end goal should be standardization. And I
think the approach oneAPI is taking is, I think, a good one. This reminds me of what we did in
standardizing MPI in that there was an effort to standardize message passing. And the way it came
about was there were proposals and discussions about different features. The community was able to

https://devcloud.intel.com/oneapi/get_started/
https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-max.html
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/PDP-11

Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

try things out as they were being proposed because there was a reference implementation available.
And, you know, so it wasn't just a design and then a standardization of that design, but people could
actually try it out and really decide whether certain decisions were good ones or not. And so, I think with
oneAPI and having it part of the open community allows the community to try things out. I think also
having, you know, the DevCloud as a platform where people can try out the aspects of heterogeneity
and so forth that they might not be able to on their own machines also helps that effort quite a bit. All
the pieces are coming together in the right way, I think, in this approach.

Mike Voss: I know you've been working on proposals related to graph libraries and C++ recently. Does
this play it all together? So, with heterogeneity and the execution of the graph algorithms and executors
and all that, what do you see there?

Andrew Lumsdaine: Yes. Before standardization, there was, of course, the Boost library effort and that,
in some sense, was an attempt to try to do what I just mentioned, provide a testing ground of different
library ideas in particular, prior to standardization. But since our initial attempt at a library, the Boost
graph library, we've evolved that into something much more modern, particularly after C++11—I think it
was really in many ways, a new language compared to C++ prior to that. And so, with our new proposal,
the proposed standard graph library, we're also including parallel execution. So, the algorithms would
take an execution policy similar to how standard library algorithms do right now. In fact, the libraries
build as much as we can on top of standard library algorithms. But at the same time, we're realizing that
the environment in the future where one would want to execute graph algorithms is going to be this
much richer ecosystem of heterogeneous processing units and maybe distributed memory and so forth.
So, we're watching executors and other parts of the standard closely as we're preparing the proposal for
the graph library standardization.

Mike Voss: So as a member of the Technical Advisory Board for oneAPI, any things you want to see in
terms of the direction of oneAPI?

Andrew Lumsdaine: No, I'm actually pretty happy with what I see there. Of course, you know, it might
actually be interesting to maybe incubate some of the graph library things there, you know, as it's
moving through standardization. But one thing I hope to see happen, Mike, is that when we were doing
some of these parallel versions of our graph algorithms, we did find that the parallel mechanisms
currently in C++ were really not rich enough for what we needed to be able to do. So, for instance, we
needed a much finer control over partitioning of parallel, just a four, for instance. And so, we ended up
using TBB [Threading Building Blocks] in several cases directly, and TBB might have even been ahead of
the game in some ways from where the execution policies are now in C++ because they really were
based on ranges rather than iterator pairs. And so, I would hope to see also kind of come out of oneAPI
and its evolution into C++ would be the range-based notions of parallelization that were in TBB as well
as concurrent containers.

Mike Voss: Yeah, so, oneAPI is DPC++, which is C++ plus SYCL and extensions, and then also libraries.
And one of the libraries that we include in oneAPI is oneTBB because we do recognize that on the host,
when you're expressing threading, there are still things missing from standard C++ and SYCL for
controlling and expressing, more generally, parallelism. And you point out some of those, like, how you
partition things. That's actually why oneTBB is part of oneAPI currently. And I agree with you, the hope is

https://www.boost.org/
https://github.com/oneapi-src/oneTBB

Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

that working with partners in these communities, we can actually evolve both C++ and SYCL to add the
necessary features for addressing those what currently might be limitations.

Andrew Lumsdaine: And I think one thing that, again, this might not be part of the API per se, but one
thing that is always helpful in some of these exploratory co-development and so forth are diagnostics
and profiling tools and so forth. So, I know part of oneAPI is the DPC++ compiler. Do you have plans to
have a DPVTune?

Mike Voss: So, oneAPI has two faces. There's the specification, you know, we welcome people to
contribute to the specification, to implement parts, if they want. And then there's also our
implementation of the standard. So, we have products, for example, there's the oneAPI Base Toolkit
from Intel that is an implementation of oneAPI that follows the standard. And also, it includes some
tools like VTune and Advisor. So VTune, which used to be just about CPUs, now there are extensions
where you can analyze the performance on your GPU. Advisor, which is a tool for helping you identify
opportunities within your code for parallelism or tuning. There's now Offload Advisor that helps you
decide if a piece of code would be profitable to target at an accelerator. So, we do have these tools. So
far, those tools are not part of the oneAPI specification, but they are part of our Base Toolkit, which we
provide. And the Base Toolkit is also free for those who are interested in looking at it. So yeah, as an
implementation, we're definitely doing those things.

Andrew Lumsdaine: No, that's good. You reminded me of the difference between a specification and an
implementation. That was certainly, in MPI, that was always an important distinction to make. And I'm
glad there is a high-quality implementation, as we used to say about some of them in MPI, for oneAPI.
So, I'll definitely take a deeper look at some of the tools that are available. I’ve just been focusing on
oneTBB and on DPC++.

Mike Voss: So, one advantage is SYCL, for example, there are other implementations. So CodePlay has
an implementation. There's triSYCL. There's hipSYCL. So, there are other implementations which are
tuned for different platforms and tuned for different purposes. Like Codeplay's version. They really are
focused on embedded systems. Intel's implementation, although it's useful in many places, we put a lot
of focus on HPC and high performance and GPU and CPU kinds of things. So, it is really good to have
these standards because you can get different flavors of implementations with different quality of
implementations for different targets. So that's an important part of the ecosystem too.

Nicole Huesman: So, we're having a fantastic discussion here. I think you guys could continue to chat. I'd
love to have you back on the program. As we wrap up, all of these—C++, SYCL, DPC++, oneAPI—they’re
all evolving based on such vital community and ecosystem input. For those listeners who want to dive in
and participate, contribute, and help shape these, how can they get started?

Mike Voss: I would recommend going to spec.oneapi.com. I was thinking about this before the podcast
and I was starting to come up with a list of all sorts of places to go, but actually spec.oneapi.com,
because oneAPI is a collection of standard things plus extensions, that page gets you links to everything.
It links you to the SYCL standards, the provisional SYCL 2020 standard. It gives you the right links to the
ISO C++ standard as well as all the extensions and the libraries that are included in oneAPI. So, I would
suggest that as a starting point.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/advisor.html
https://www.codeplay.com/solutions/ecosystem/
https://github.com/triSYCL/triSYCL
https://github.com/illuhad/hipSYCL
https://spec.oneapi.com/versions/latest/index.html

Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

And then actually involvement in the communities, probably Andrew can comment ‘cause he's involved
in C++, in the TAB, and so he probably is better at explaining how to get involved in those things.

Andrew Lumsdaine: Well, in the ‘before’ times, I would have said, just come to the next C++ in-person
meeting and just show up and go to the sessions that seem interesting and start contributing because
there's no membership fee to just contribute and so forth. That's a little more complicated now, of
course, because the meetings tend to now all take place online. But I think if you start with the pointer
to the ISO standard, there are pointers to the different working groups and ways to join the appropriate
mailing lists. And C++ goes in cycles aimed at three years. And there are different working groups trying
to move different libraries and different language features through. So, joining that would really mean
joining one of the working groups and participating in their mailing list, wikis, and the online meetings,
and those vary depending on the particular group. So, the best way to start is where Mike mentioned,
and then following the C++ links, and then to the particular working groups that you might be interested
in.

Mike Voss: And one additional comment I'd make about the ISO C++ groups are that, if you attend
either physically or virtually, the meetings sometimes are straw polls where they try to get the feeling of
the room of what people think on certain topics, but there's always the option to not vote. So, if you're
new to it and you're worried that you'll feel intimidated or that you won't know what's going on, many
people don't vote. So, they'll come up to a topic and say, here's what we're voting on, are you for or
against, and so on. And I think it's very, very rare that everyone in the room actually votes. It's not
something intimidating where you feel like you have to know what's going on for your first meetings or
for any particular topic. You can just attend and be in the room and listen in to what's going on.

Nicole Huesman: So, we've talked about the SYCL ecosystem and how much it's growing and thriving
with its different implementations—ComputeCpp, hipSYCL, triSYCL, DPC++. Can you give our listeners a
pointer as to how to get involved in that community?

Mike Voss: So that is in Khronos. So, you can go to the Khronos organization. They have a number of
standards that they work on. Just like ISO C++, Khronos and the SYCL standard are very open. Anyone
can go to those as well and participate.

Nicole Huesman: And then I also wanted to mention, the two of you touched on DevCloud quite a bit,
the link for that, and we'll also have all of these links available for listeners, the link for that is
devcloud.intel.com/oneAPI.

So, with that, so wonderful to have you both on the program. Andrew, thanks so much for sharing your
insights with us.

Andrew Lumsdaine: Oh, thank you. It was a blast.

Nicole Huesman: And Mike. So great to have you back on the program.

Mike Voss: Thank you. It was a pleasure.

https://isocpp.org/std/the-standard
https://www.khronos.org/sycl/
https://devcloud.intel.com/oneapi/get_started/

Episode 15: A Proving Ground for Open Standards
Host: Nicole Huesman, Intel
Guests: Mike Voss, Intel; Andrew Lumsdaine, Northwest Institute for Advanced Computing

Nicole Huesman: For all of you listening, thanks so much for joining us. Let's continue the conversation
at oneapi.com. Until next time!

