

LEGAL NOTICES AND DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel, the Intel logo, Movidius, nGraph, neon, VTune, Xeon, Nervana, Atom, Core, Arria, and Myriad are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation.

AGENDA

- Intel[®] AI Academy
- Intel[®] AI Portfolio
- Overview of Intel[®] Optimized Caffe* and TensorFlow*
- Intel AI Use Cases
- Training on Intel® Optimized Caffe
- Training on TensorFlow with Intel® optimizations
- Validation on CPU/GPU using the Intel® OpenVINO[™] SDK Hands On
- Validation on the Intel[®] Movidius[™] Neural Compute Stick (NCS) Hands On
- Deploy to an edge device (Raspberry Pi*) Demo

INSTRUCTIONS TO PARTICIPANTS

• Intel[®] DevCloud Access for today

Create an account on the Intel AI DevCloud https://colfaxresearch.com/aidevcon18 - Passcode: AG7WNN92

- Download and Install the Intel® OpenVINO[™] SDK
- <u>https://software.intel.com/en-us/openvino-toolkit</u>
- Download and Install the Intel[®] Movidius[™] Neural Compute Stick SDK
- <u>https://developer.movidius.com/start</u>

QUESTIONS? ASK US!

Developer Evangelist

Developer Evangelist

Developer Evangelist

INTEL® AI ACADEMY

AI ADOPTION IS JUST BEGINNING

In a recent Forrester Research survey... 5000 of business and technology professionals said they're researching AI, but only... 12000 said they are currently using AI systems.

Source: Forrester Research – Artificial Intelligence: Fact, Fiction. How Enterprises Can Crush It; What's Possible for Enterprises in 2017

Zone

Developer

ntel

oftware

THE FUTURE OF V

Whether you're starting out or already an expert, the Intel® AI Academy provides essential learning materials, community, tools, and technology to boost your AI development.

Join for Free

000

Choose a Framework

Enhance with Tools

Sharpen your skills in algorithms, machine learning, and more.

Train deep neural networks faster on Intel® architecture

2

Optimize and expand framework capabilities with our libraries.

https://software.intel.com/ai-academy

INTEL[®] AI ACADEMY

For developers, students, instructors, and startups

- Online tutorials
- Webinars
- Student kits
- Support forums

DEVELOP

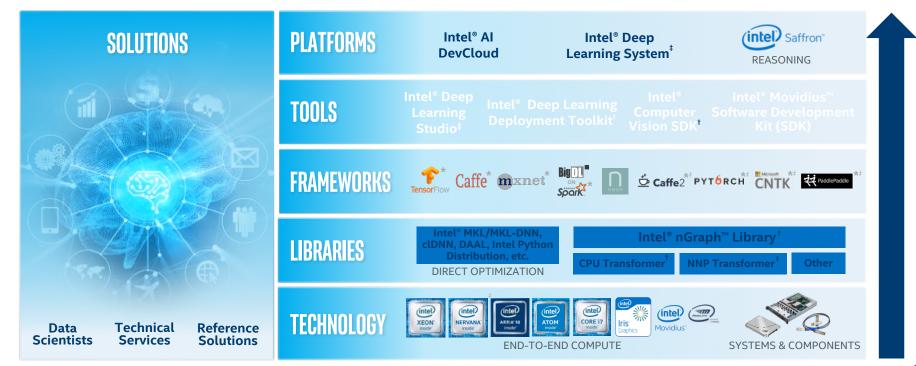
- Intel optimized frameworks
- Exclusive access to Intel[®] AI DevCloud

TEACH

- Comprehensive courseware
- Hands-on labs
- Cloud compute
- Technical support

- Project showcase opportunities at Intel Developer Mesh
- Industry and academic events

https://software.intel.com/ai-academy



INTEL® AI PORTFOLIO

[†]Beta available [‡]Future *Other names and brands may be claimed as the property of others.

AI FRAMEWORKS OPTIMIZED BY INTEL

Popular DL frameworks are now optimized for CPU!

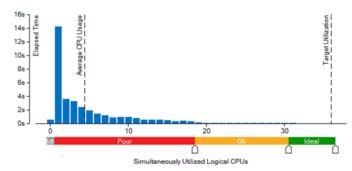
CHOOSE YOUR FAVORITE FRAMEWORK

See installation guides at ai.intel.com/framework-optimizations/

and others to be enabled via Intel[®] nGraph[™] library

SEE ALSO: Machine Learning Libraries for Python* (Scikit-learn*, Pandas, NumPy), R (Cart, randomForest, e1071), Distributed (MlLib on Spark, Mahout) *Limited availabilitv todav

DEEP LEARNING FRAMEWORK Optimized for IA: CAFFE*


INITIAL CIFAR-10 RUN IN CAFFE*— INTEL® VTUNE™ AMPLIFIER ANALYSIS

Elapsed Time ⁽²⁾: 37.026s

⊙ <u>CPU Time</u> [®] :	1306.422s
Effective Time [®] :	162.646s
	1134.014s 🏲
Imbalance or Serial Spinning (OpenMP) [®]	1100.758s 🏲
Lock Contention (OpenMP) [®] :	0.019s
Other [®] :	33.238s
Overhead Time [®] :	9.762s
Total Thread Count:	38
Paused Time [®] :	0s

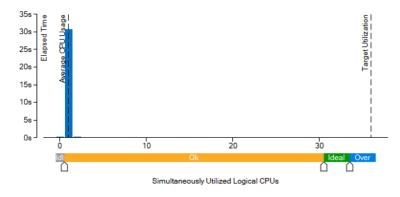
CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

Hardware Details:

- 36 available physical cores
- Dual-socket Intel[®] Xeon[®] processor E5-2699 v3 at 2.30 GHz with 18 cores/socket (HT disabled)
- 64 GB of DDR4 @ 2,133 MHz

Conclusions:


- Multithreading scalability
- Only used in GEMM operations of Intel[®] Math Kernel Library (Intel[®] MKL)

INITIAL CIFAR-10 RUN IN CAFFE—INTEL® VTUNE™ AMPLIFIER ANALYSIS

Elapsed Time⁽²⁾: 31.149s
 <u>CPU Time⁽⁰⁾</u>: 31.240s
 <u>Total Thread Count</u>: 3
 <u>Paused Time⁽⁰⁾</u>: 0s

OPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

- New Run Details:
 - Export OMP_NUM_THREADS=1
 - · Same hardware and execution setup
 - Execution time reduced (37.0s \rightarrow 31.2s)
- Conclusions:
 - Threads re-initialization and data distribution introduce significant (15.7%) overhead
 - Only used in GEMM operations of Intel[®] Math Kernel Library (Intel[®] MKL)

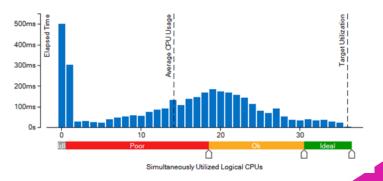
CURRENT OPTIMIZATIONS

LEVERAGE OPTIMIZATION TOOLS & LIBRARIES

SCALAR, SERIAL OPTIMIZATIONS

VECTORIZATION

THREAD PARALLELIZATION

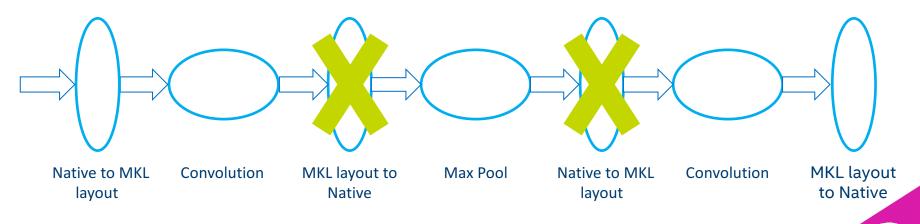

SCALE FROM MULTICORE TO MANY CORE

https://software.intel.com/en-us/articles/caffe-optimized-for-intel-architectureapplying-modern-code-techniques

Elapsed Time ^② : 3.602s	
⊙ <u>CPU Time</u> [®] :	111.070s
Effective Time [®] :	50.819s
	58.437s 🎙
Imbalance or Serial Spinning (OpenMP) [®] :	55.477s 🏲
Lock Contention (OpenMP)	0.340s
Other [®] :	2.620s
Overhead Time [®] :	1.814s
Total Thread Count:	37
Paused Time [@] :	0s

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.



DEEP LEARNING FRAMEWORK OPTIMIZED For IA: TENSORFLOW*

MINIMIZE CONVERSIONS OVERHEAD

- End-to-end optimization can reduce conversions
- Staying in optimized layout as long as possible becomes one of the tuning goals
- Minimize the number of back-and-forth conversions
- Use of graph optimization techniques

OPTIMIZING TENSORFLOW* AND OTHER DL FRAMEWORKS FOR Intel® Architecture

- Leverage High-Performance Compute Libraries and Tools
 - For example, Intel[®] Math Kernel Library, Intel[®] Distribution for Python*, Intel[®] Compiler, etc.
- Data Format/Shape
 - Right format/shape for max performance: blocking, gather/scatter
- Data Layout
 - Minimize cost of data layout conversions
- Parallelism
 - Use all cores, eliminate serial sections, load imbalance

- Memory Allocation
 - Unique characteristics and ability to reuse buffers
- Data Layer Optimizations
 Parallelization, vectorization, IO
- Optimize Hyper Parameters
 - For example, batch size for more parallelism
 - Learning rate and optimizer to ensure accuracy/convergence

INITIAL PERFORMANCE GAINS ON INTEL® XEON® PROCESSORS

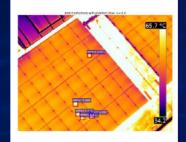
(2-SOCKET INTEL[®] MICROARCHITECTURE CODE NAME BROADWELL—22 CORES)

- Baseline using TensorFlow* 1.0 release with standard compiler knobs
- Optimized performance using TensorFlow with Intel® optimizations and built with
- bazel build --config=mkl --copt="-DEIGEN_USE_VML"

Benchmark	Metric	Batch Size	Baseline Performance Training	Baseline Performance Inference	Optimized Performance Training	Optimized Performance Inference	Speedup Training	Speedup Inference
ConvNet-Alexnet	Images/ sec	128	33.52	84.2	524	1696	15.6x	20.2x
ConvNet- GoogleNet v1	Images/ sec	128	16.87	49.9	112.3	439.7	6.7x	8.8x
ConvNet-VGG	Images/ sec	64	8.2	30.7	47.1	151.1	5.7x	4.9x

ADDITIONAL PERFORMANCE GAINS FROM PARAMETERS TUNING

(BEST SETTING FOR INTEL® XEON® PROCESSORS (INTEL® MICROARCHITECTURE CODE NAME BROADWELL -2 SOCKET-44 CORES)


- Data format: CPU prefers NCHW data format
- Intra_op, inter_op and OMP_NUM_THREADS: set for best core utilization
- Batch size: higher batch size provides for better parallelism
- A batch size that is too high can increase working set and impact cache/memory perf

Benchmark	Data Format	Inter_op	Intra_op	KMP_BLOCKTIME	Batch Size
ConvNet- AlexnetNet	NCHW	1	44	30	2048
ConvNet-Googlenet V1	NCHW	2	44	1	256
ConvNet-VGG	NCHW	1	44	1	128

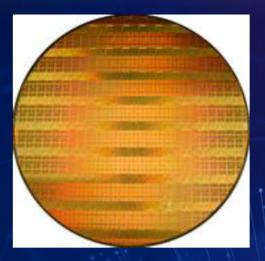
INTEL AI USE CASES

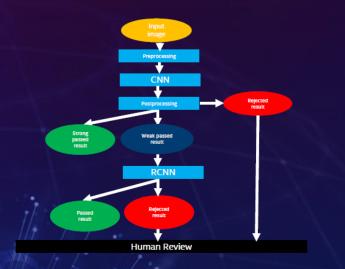
HIGH RISK INSPECTION BY DRONES: 1 CPU NODE

Chong Y, Yiqiang Z and Jiong G, "Automatic Defect Inspection Using Deep Learning for Solar Farm" Dec. 2017. https://software.intel.com/en-us/articles/automatic-defect-inspection-using-deep-learning-for-solar-farm

DRUG DESIGN: 1 CPU NODE

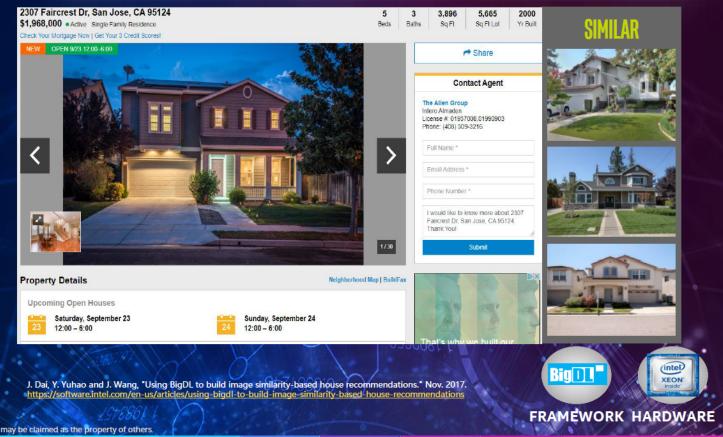
- Deep learning training with huge dataset (4 Million compound-protein interactions)
- Stunning accuracy (98.2%)


•Training in 1.1 – 8.8 days



M. Hamanaka et al, "CGBVS-DNN: Prediction of Compound-protein Interactions Based Deep Learning" http://onlinelibrary.wiley.com/doi/10.1002/minf.201600045/full

SILICON PACKAGE DEFECT DETECTION: 8 CPU NODES


Training within one hour on 8 CPU nodes.

Z. Yiqiang and J. Gong, "Manufacturing package fault detection using deep learning." Aug. 2017. https://software.intel.com/en-us/articles/manufacturing-package-fault-detection-using-deep-learning

HOME BUYING ASSISTANT: 10 CPU NODES

inte

CREDIT CARD ANOMALY DETECTION: 32 CPU NODES

PAYMENT PROCESSING Company

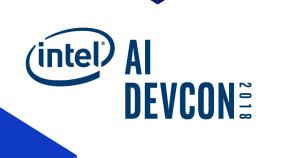
intel

HANDS-ON CODING: TRAINING A CONVOLUTIONAL NEURAL Network using the intel® AI devcloud

INTEL® AI DEVCLOUD

INTEL® AI DEVCLOUD

- A cloud-hosted hardware and software platform available to 200K Intel[®] AI Academy members to learn, sandbox, and get started on Artificial Intelligence projects.
- Intel[®] Xeon[®] Scalable Processor: Intel[®] Xeon[®] Gold 6128 processor
 @ 3.40 GHz, 24 cores with 2-way hyper-threading, 96 GB of onplatform RAM (DDR4), 200 GB of file storage.
- Four weeks of initial access, with extension based on project needs.
- Technical support via Intel[®] AI Academy support community.
- Available now to all AI Academy members.


https://software.intel.com/ai-academy/tools/devcloud

OPTIMIZED SOFTWARE - NO INSTALL REQUIRED

- Intel[®] Distribution of Python* 2.7 and 3.6 including NumPy, SciPy, pandas, scikitlearn*, Jupyter*, matplotlib, and mpi4py, Keras
- Intel[®] Optimization for Caffe*
- Intel[®] Optimization for TensorFlow*
- Intel[®] Optimization for Theano*
- Intel[®] Nervana[™] platform, neon[™] framework
- More frameworks as they are optimized
 - MXNet*
 - Py-Faster-RCnn

- Intel[®] Parallel Studio XE Cluster Edition and the tools and libraries included with it:
 - Intel[®] C, C++ and Fortran compilers
 - Intel[®] MPI Library
 - Intel[®] OpenMP* library
 - Intel[®] Threading Building Blocks library
 - Intel[®] Math Kernel Library-DNN
 - Intel[®] Data Analytics Acceleration Library

REQUEST ACCESS

Intel® AI DevCloud

GET DEVCLOUD ACCESS

- Click the request access button to open the application page.
- Fill in the required information and submit the application.
- After submitting your application, you will normally receive an email within 2 business days, including account number, node, and user's guide.
- Try not to loose this email; it has your user and UUID = PW.

Developer Some		Search ear context library. 🔍 😐 waves 🔺 Separary 🕲 Organiza
INTEL" AI ACADEMY		< 5an
	Intel® Al DevCloud	
	Free cloud compute is now available for intel [®] Al Academy members. Use Intel [®] Xeon [®] Scalable processors for your machine learning and deep learn compute needs.	
	Dumble Available Framework with • 1010 dgr) of testing • Access to a windle date of head togood to Scalable • Access to a windle date of head togood to Scalable • Access to a windle date of head togood togood • Access to a windle date of head togood togood • Access to a windle date of head togood togood • Access to a windle date of head togood • Access togood • Acce	"Theory" Terosof Run"

CONNECT VIA TERMINAL AND JUPYTER* NOTEBOOKS

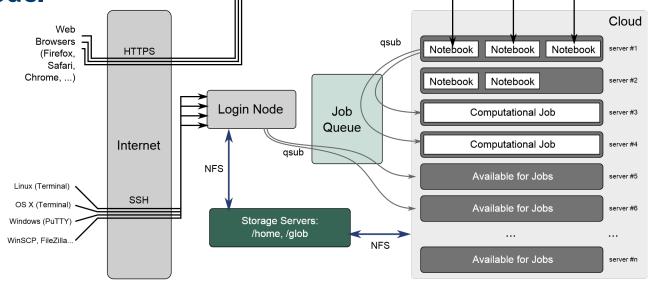
Intel[®] AI DevCloud

CONNECTING TO THE DEVCLOUD

- -Linux*/Mac*/Linux on Windows if you have Windows® 10
 - Download and save the Linux access key.

Host colfax

User u<your usderID> IdentityFile ~/.ssh/colfax-access-key-<your user ID> ProxyCommand ssh -T -i ~/.ssh/colfax-access-key-<your user ID> guest@cluster.colfaxresearch.com


-If you are using PuTTY from Windows:

- Download the ssh client PuTTY make sure to use the 64-bit MSI installer.
- Download and save Windows access key.
- Right click on the downloaded key and choose "Load into Pageant."
- Configure PuTTY.

ONCE CONNECTED...

- You are officially connected to the Login Node.
- This is not your compute node --- c009 is always your login node.

JUPYTER*HUB NOTEBOOK

- Navigate to <u>hub.colfaxresearch.com</u>
- Username: <available on your DevCloud account>
- Password: < available on your DevCloud account >
- Refer <u>Welcome.ipynb</u> notebook in your home directory upon login

ightarrow () $ ightarrow$ https://hub.colfaxresearch.com//	nub/login	□ ☆	∑≓	L	Ŀ	
Bookmarks						
💭 jupyter						
	Sign in					
	Your username and password are listed in the					
	welcome email.					
	Username:					
	Password:					
	Sign In					

WE WILL USE THE JUPYTER NOTEBOOK INTERFACE FOR TODAY'S SESSION

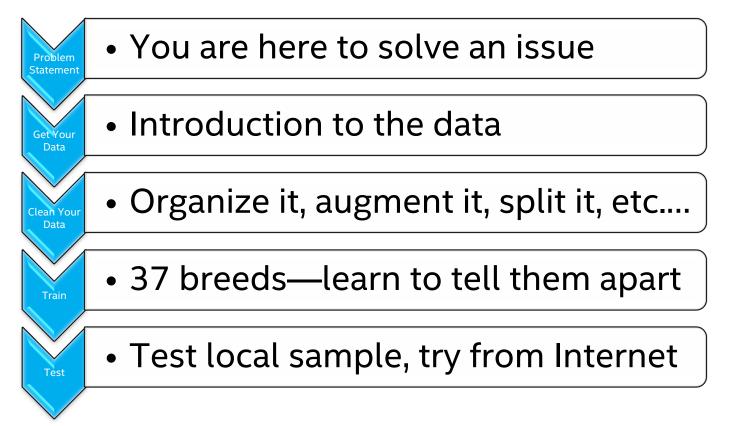
PROBLEM STATEMENT

ANIMAL ID STARTUP

- Natural and man-made disasters create havoc and grief. Lost and abandoned pets/livestock only add to the emotional toll.
- How do you find your beloved dog after a flood? What happens to your daughter's horse?
- Our charter is to unite pets with their families.

YOUR JOB: DATA SCIENTIST

- We need your help creating a way to identify animals. The initial product is focused on cat/dog breed identification. Your app will be used by rescuers and the public to document found animals and to search for lost pets.
- Welcome aboard!



CAFFE* WORKFLOW

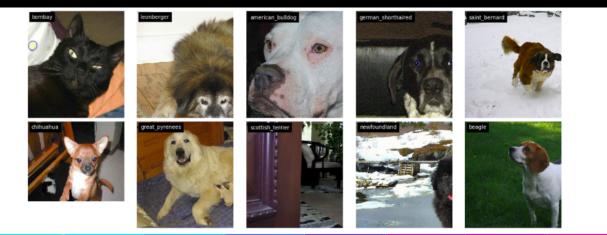
TRAINING BREEDS

REPEAT STEPS FOR THE OXFORD PETS DATASET

PART 1: FETCH THE DATA

Fetch Your Data

The Oxford Pets Database


- 37 categories
- ~200 images of each class

′intel

- 25 Dogs
- 12 cats
- <u>Paper</u>

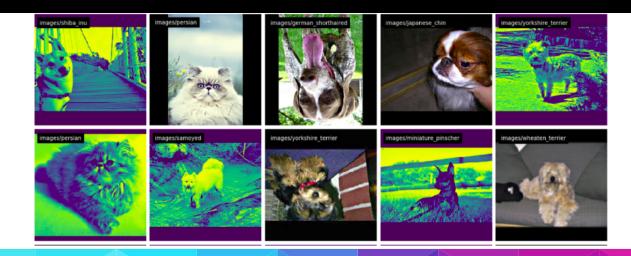
PART 1: VIEW THE BASELINE DATA

PART 1: CLEAN AND NORMALIZE THE DATA

Extract, Transform and Load (ETL)

- Data cleaning Eliminates noise and resolves inconsistencies in the data.
- Data integration Migrates data from various different sources into one coherent source, such as a data warehouse.
- Data transformation Standardizes or normalizes any form of data.
- Data reduction Reduces the size of the data by aggregating it.
- Prepare data as expected by topology.
- Ensure you have enough processing and storage capacity.

PART 1: AUGMENT THE DATA


Add noise to existing data

- Improves training and inference accuracy
- Some ways to accomplish augmentation:
 - Flip
 - Flop
 - Blur
 - Rotate
 - Extract color channels

PART 1: VIEW RESULTS POST AUGMENTATION

PART 1: ORGANIZE DATA FOR CONSUMPTION BY CAFFE*

PART 1: CONFIRM FOLDER STRUCTURE

PART 1: ORGANIZE DATA FOR CONSUMPTION BY CAFFE*

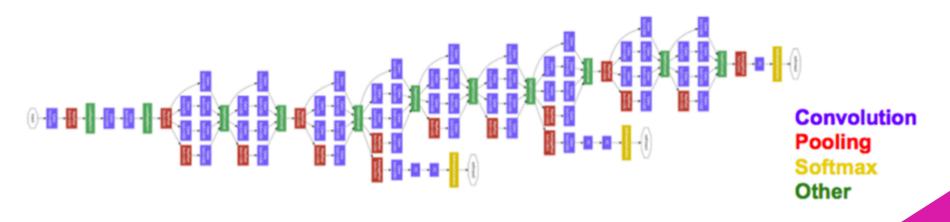
- Data organization is framework-specific
- Caffe expects data to be split into "train" and "val" folders
 - Non-overlapping data
 - Prevents overfitting
- Folder structure
- train
 - Cat
 - Cat_t1.png
 - Cat_t2.png
 - ...
 - Dog
 - Dog_t1.png
 - Dog_t2.png
 - ...

- val
 - Cat
 - Cat_v1.png
 - Cat_v2.png
 - ...
 - Dog
 - Dog_v1.png
 - Dog_v2.png

întel

• ...

PART 1: OPTIMIZE DATA FOR INGESTION


Create LMDB Dataset

- Database creates pointers to image files and identifies them by number.
- Improves efficiency of image processing and training.
- Point Caffe* to the right "train" and "val" folders created in prior step.
- Calculate mean value of all images.
 - Defined in mean.binaryproto

PART 2: SELECT THE RIGHT TOPOLOGY

- Criteria:
 - Time to train: Depends on number of layers and computation required.
 - Size: Keep in mind the edge device you want to deploy to, networks it supports, and resources like memory.
 - Inference speed: Tradeoff between accuracy and latency.
 - GoogLeNet (Inception V1) was our topology of choice.

PART 2: DISPLAY TUNABLE PARAMETERS (HYPER-PARAMETERS)

Display Tunable Parameters

- Train.prototxt Network definition file
- Solver.prototxt Tunable hyper-parameters

PART 2: START TRAINING

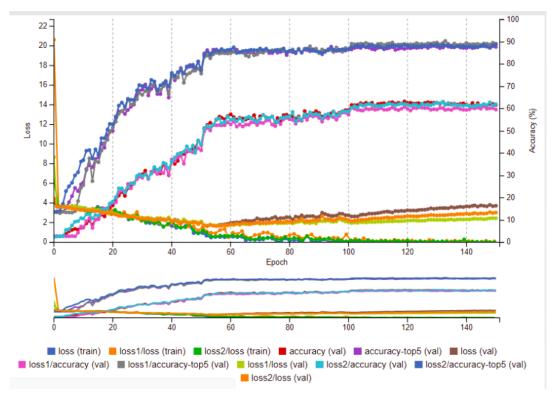
Display Tunable Parameters Start Training

PART 2: ACCURACY AND LOSS FOR FULLY TRAINED NETWORK

PART 2: LOOK AT A SAMPLE IMAGE

PART 2: INFERENCE ON SAMPLE IMAGE

PART 2: SUMMARY



Summary

- Getting your dataset
- Sorting your dataset
- Generating LMDB Record
- Training your dataset
- Using your Caffe* model to test image classification

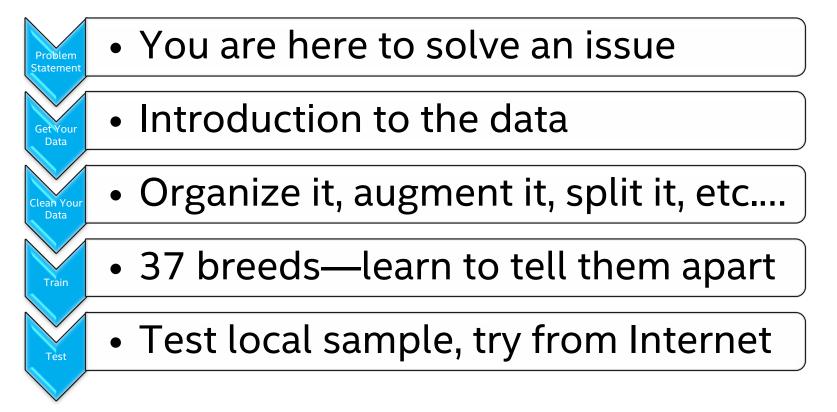
RESULTS ON GOOGLENET INCEPTION V1

(intel) Al

SAVE FILES FOR INFERENCE

Once the Caffe* model is trained, we will need the below files saved:

- deploy.prototxt Network file that contains the layer information for the topology
- snapshotXXX.caffemodel Weights file



TENSORFLOW* WORKFLOW

TRAINING BREEDS

REPEAT STEPS FOR THE OXFORD PETS DATASET

PART 1: FETCH THE DATA

The Oxford Pets Database

- 37 categories
- ~200 images of each class
- 25 dogs
- 12 cats
- Paper talks about data and their techniques

PART 1: VIEW THE BASELINE DATA

Fetch the data View and understand the data

(intel)

A

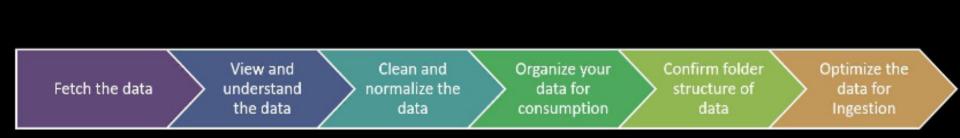
PART 1: CLEAN AND NORMALIZE THE DATA

- Extract, Transform and Load (ETL)
 - Data cleaning Eliminates noise and resolves inconsistencies in the data.
 - Data integration Migrates data from various different sources into one coherent source, such as a data warehouse.
 - Data transformation Standardizes or normalizes any form of data.
 - Data reduction Reduces the size of the data by aggregating it.
- Prepare data as expected by topology.
- Ensure you have enough processing and storage capacity.

PART 1: ORGANIZE DATA FOR CONSUMPTION BY TENSORFLOW*

PART 1: ORGANIZE DATA FOR CONSUMPTION - CATEGORIZE

- TensorFlow* expects images to be organized into categories.
- Once complete, each category would look something like this (there are 37 categories).


breeds/ sorted/ british shorthair/ British Shorthair 184.jpg British_Shorthair_269.jpg British Shorthair 37.jpg British Shorthair 71.jpg British Shorthair 167.jpg japanese chin/ japanese chin 167.jpg japanese chin 182.jpg japanese_chin_191.jpg japanese_chin_38.jpg japanese chin 17.jpg wheaten terrier/ wheaten terrier 74.jpg wheaten terrier 128.jpg wheaten terrier 137.jpg wheaten terrier 4.jpg wheaten terrier_9.jpg

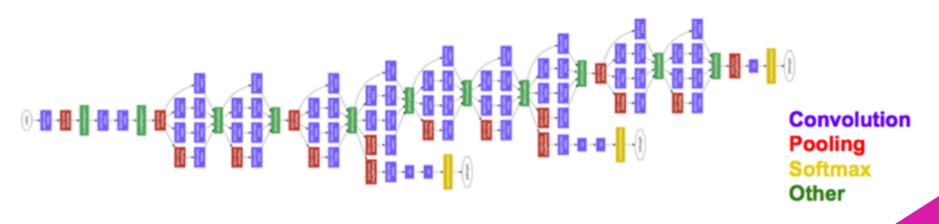
PART 1: CONFIRM FOLDER STRUCTURE

PART 1: OPTIMIZE DATA FOR INGESTION

PART 1: OPTIMIZE DATA FOR INGESTION - CREATE TFRECORDS

- TFRecord is the TensorFlow* recommended format for ingestion.
- It is a sequence of binary strings.
- If the dataset is too large, we could create multiple shards of the TFRecords to make it more manageable.
- We create two TFRecords, one for training and another for validation.

https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database


PART 2: TRAINING

- Step 1: Choose the right topology.
- Step 2: Set up a pre-trained model to use breeds dataset.
- Step 3: Evaluate, freeze, and test results.

PART 2: STEP 1 - SELECT THE RIGHT TOPOLOGY

- Criteria:
 - Time to train: Depends on number of layers and computation required.
 - Size: Keep in mind the edge device you want to deploy to, networks it supports and resources like memory.
 - Inference speed: Tradeoff between accuracy and latency.

PART 2: DOWNLOAD PRE-TRAINED MODEL

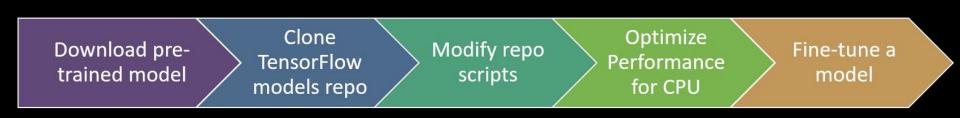
Download pretrained model

PART 2: CLONE TENSORFLOW*/MODELS GITHUB REPO

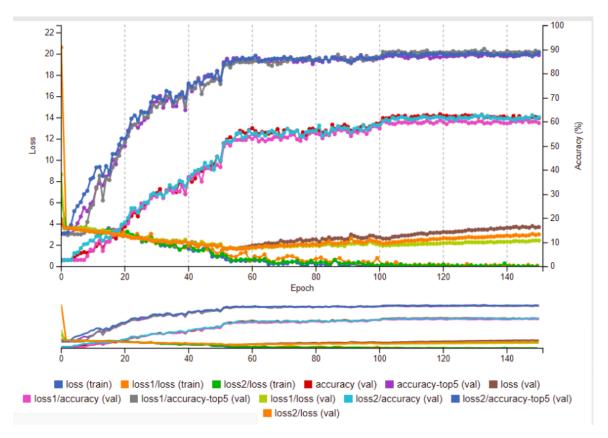
• Clone TensorFlow/models GitHub* repo

We use transfer learning using a Convolutional Neural Network pre-trained on ISLVRC-2012-CLS image classification dataset (<u>https://github.com/tensorflow/models</u>)

PART 2: MODIFY/ADD FILES TO SLIM REPO TO WORK WITH BREEDS Dataset



PART 2: OPTIMIZE PERFORMANCE FOR CPU


PART 2: INITIATE TRAINING

- Initiate training and review live training logs:
 - When using a pre-trained model on a different dataset, note that the final layer will change to indicate the new set of categories.
 - Indicate which subset of layers to retrain while keeping others frozen.
 - View results.

PART 2: RESULTS ON GOOGLENET INCEPTION V1 USING BREEDS

PART 3: EVALUATE, FREEZE GRAPH, AND TEST

SAVE FILES FOR INFERENCE

• Save the graph def and frozen graph (.pb file).

INFERENCE USING THE INTEL® MOVIDIUS™ NEURAL COMPUTE STICK

The need for 'intelligence at the edge'!

What are you? I am asking the 'cloud' if I should vacuum you too.

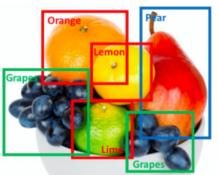
> I'll scratch you down to your motors if you come any closer!

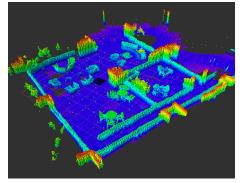
Let's look at a larger scale...

20 billion connected devices by 2020¹

... generating billions of petabytes of data traffic between devices and the cloud

1 Source: http://www.gartner.com/newsroom/id/3598917




Movidius[™] an Intel company

GAME-CHANGING INTELLIGENT DEVICES

Powered by Intel[®] Movidius[™] vision processing unit (VPU)

Hikvision Intelligent Camera Hikvision ndustrial Camera

DJI Inspire* 2

DJI Phantom* 4 Pro

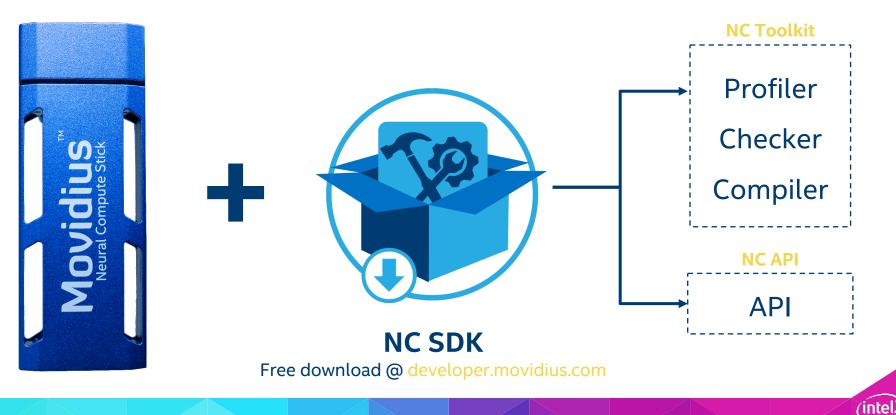
DJI Mavic* Pro

Uniview IP Camera Dahua ndustrial Camera

Moto* 360^o Camera

INTEL[®] MOVIDIUS[™] NEURAL COMPUTE STICK

Redefining the AI developer kit



- Neural Network Accelerator in USB stick form factor
- No additional heat-sink, no fan, no cables, no additional power supply
- Prototype, tune, validate, and deploy deep neural networks at the edge
- Features the same Intel[®] Movidius[™] Myriad[™] vision processing unit (VPU) used in drones, surveillance cameras, VR headsets, and other low-power intelligent and autonomous products

INTEL[®] MOVIDIUS[™] NEURAL COMPUTE STICK

Redefining the AI developer kit

INTEL[®] MOVIDIUS[™] NEURAL COMPUTE STICK

Redefining the AI developer kit

intel

EXPLORE DEVELOPER.MOVIDIUS.COM

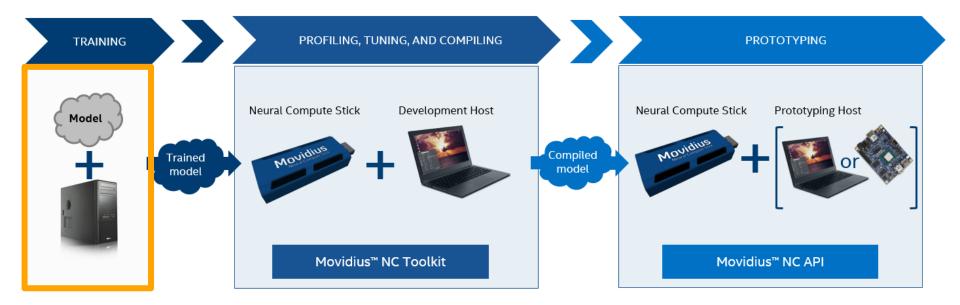
A developer-friendly website

Try out the following pages:

- Main page
- Getting started
- Downloads
- Docs
- Forums
- Where to buy

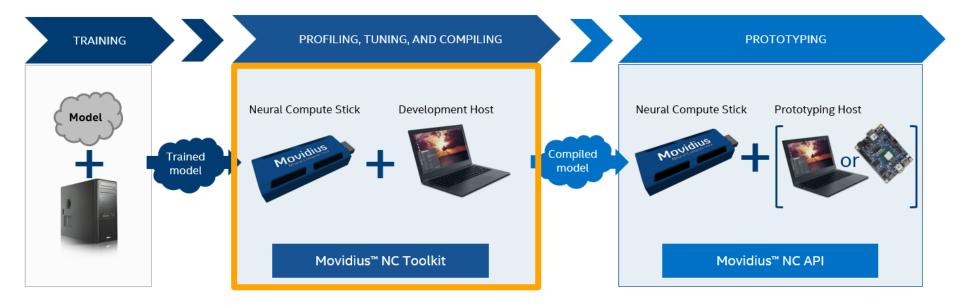
What is the Neural Compute Stick?

The Movidium[®] Neural Compute Stick (NCS) is a try funites deep learning device that you can use to learn AI programming at the edge. NCS is powered by the same low power high performance Movidius¹⁴ Vision Processing Unit (VPU) that can be found in millions of smart security cameras, gesture controlled drones, industrial machine vision equipment, and more.

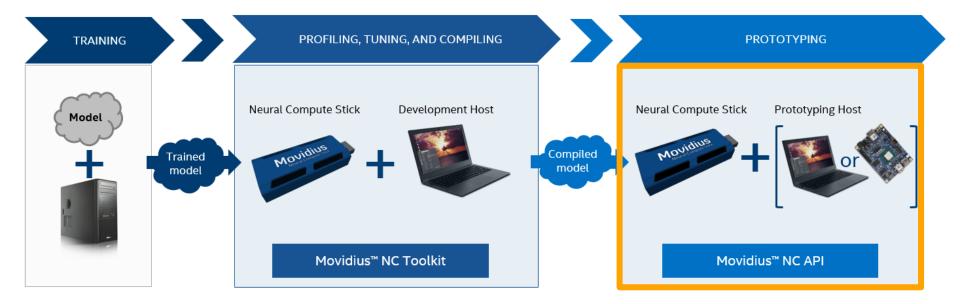

What can you do with the NCS?

The Movidius Neural Compute Stick enables rapid prototyping, validation and deployment of Deep Neural Network (DNN) inference applications at the edge. Its low-power VPU architecture enables an entiety new segment of Al applications that aren't reliant on a connection to the cloud.

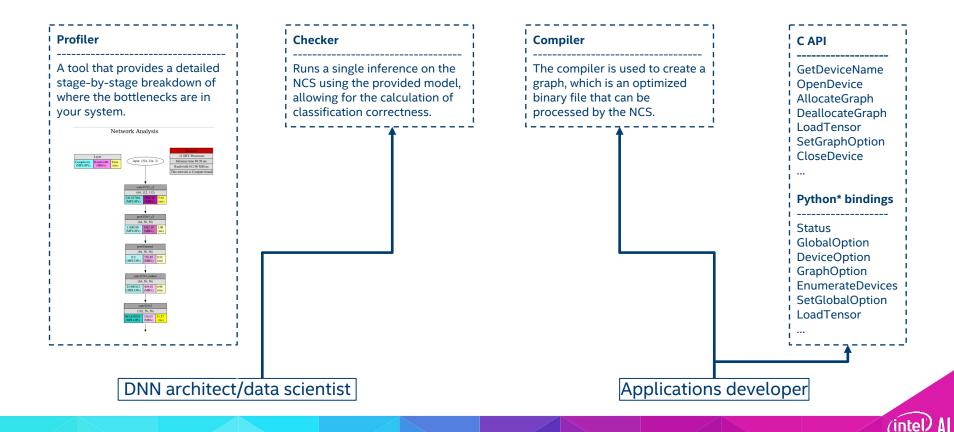
The NCS combined with Movidius¹⁹ Neural Compute SDK allows deep learning developers to profile, tune, and deploy Convolutional Neural Network (CNN) on low-power applications that require real-time inferencing.



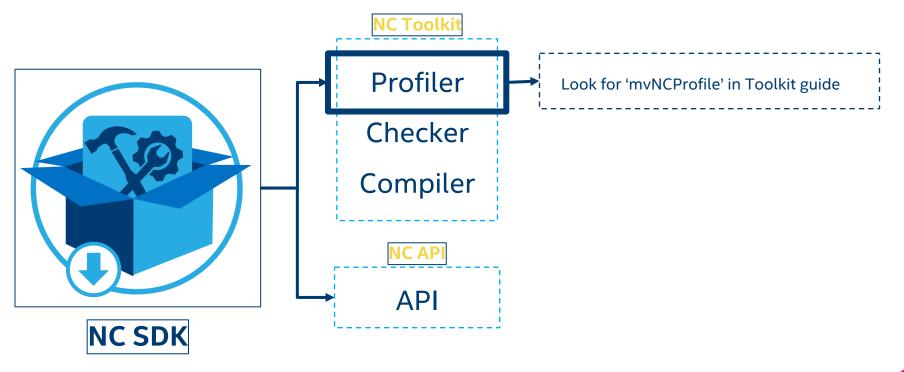
INTEL[®] MOVIDIUS[™] SOFTWARE DEVELOPMENT KIT (SDK)



INTEL[®] MOVIDIUS[™] SOFTWARE DEVELOPMENT KIT (SDK)

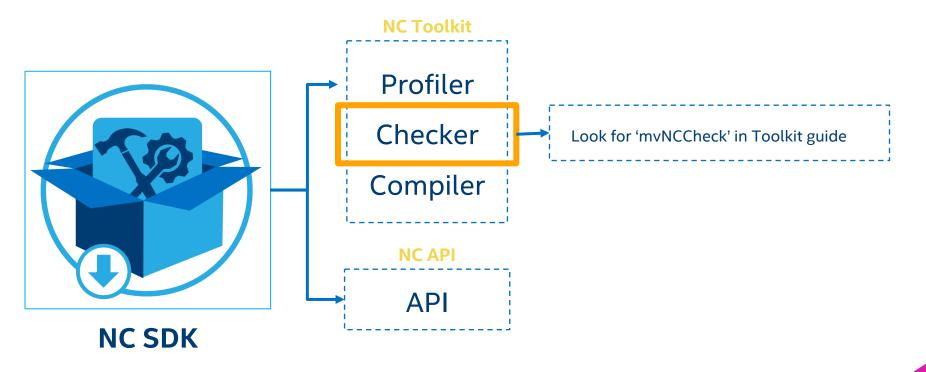


INTEL[®] MOVIDIUS[™] SOFTWARE DEVELOPMENT KIT (SDK)



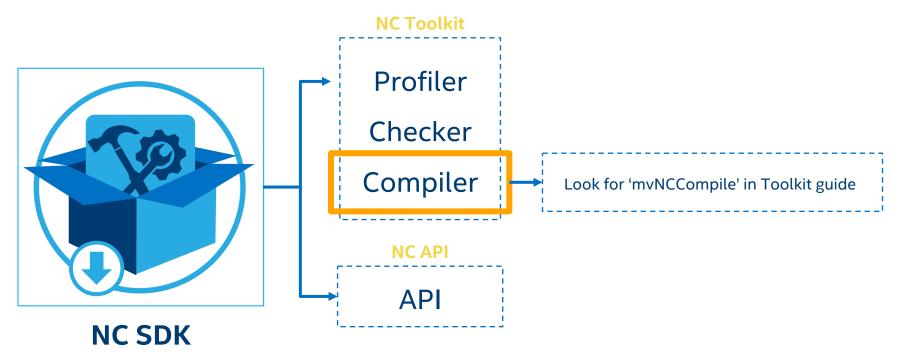
WHAT CAN I DO WITH THE NCS?

PROFILER

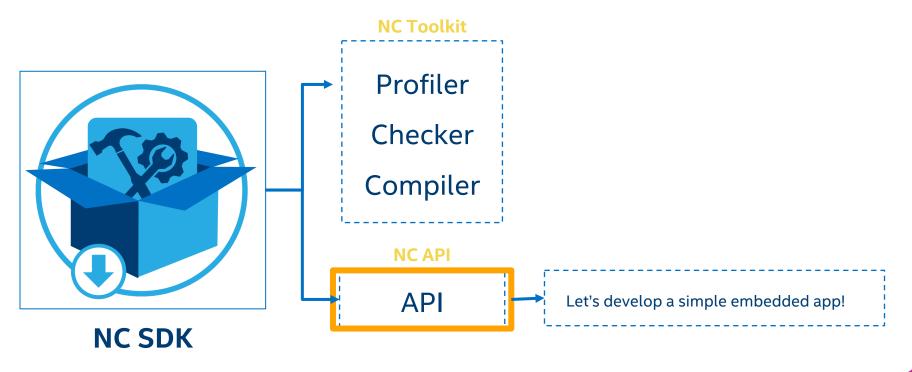

Get a better insight into your network's complexity, bandwidth, and execution time

íntel

CHECKER


Run a single inference on the NCS and compare results with that of Caffe*

COMPILER


Convert your network into a binary graph file that can be loaded onto the NCS

SDK API FRAMEWORK

Develop you own embedded application with deep-learning accelerated image processing

EXERCISE 1: INSTALL AND SET UP THE INTEL® MOVIDIUS[™] NCSDK

THE FOUR-STEP PROCESS

- Step 1: Requirements
 - Ubuntu* 16.04, Rpi 3 Model B or Ubuntu VM
 - Intel[®] Movidius[™] NCS
 - Intel[®] Movidius[™] SDK
- Step 2: Install the SDK

mkdir -p ~/workspace

cd ~/workspace

git clone https://github.com/movidius/ncsdk.git

cd ~/workspace/ncsdk

make install

- Step 3: Test installation by running examples
 - Plug in NCS and run commands in terminal

cd ~/workspace/ncsdk

make examples

• Step 4: Well...there isn't one. You are ready to start!

Software

EXERCISE 2: IMAGE CLASSIFICATION USING ALEXNET/GOOGLENET AND INCEPTION_V1

IMAGE CLASSIFICATION ON CAFFE* AND TENSORFLOW*

- Remember, we used :
 - AlexNet and GoogLeNet on Caffe
 - Inception_v1 on TensorFlow
- Let's create a graph file for these default models
 - Caffe/Alexnet: https://github.com/movidius/ncappzoo/tree/master/caffe/AlexNet
 - Caffe/GoogLeNet: https://github.com/movidius/ncappzoo/tree/master/caffe/GoogLeNet
 - TensorFlow/ Inception_v1

https://github.com/movidius/ncappzoo/tree/master/tensorflow/inception_v

INSTRUCTIONS FOR CAFFE*/ALEXNET

- 1. mkdir -p ~/workspace
- 2. cd ~/workspace
- 3. git clone https://github.com/movidius/ncappzoo
- 4. cd ~/workspace/ncappzoo/caffe/AlexNet
- 5. make run_py

Reference: https://github.com/movidius/ncappzoo/tree/master/caffe/AlexNet

INSTRUCTIONS FOR CAFFE*/GOOGLENET

- 1. mkdir -p ~/workspace
- 2. cd ~/workspace
- 3. git clone https://github.com/movidius/ncappzoo
- 4. cd ~/workspace/ncappzoo/caffe/GoogLeNet
- 5. make run_py

Reference: https://github.com/movidius/ncappzoo/tree/master/caffe/GoogLeNet

INSTRUCTIONS FOR TENSORFLOW*/INCEPTION_V1

- 1. mkdir -p ~/workspace
- 2. cd ~/workspace
- 3. git clone https://github.com/movidius/ncappzoo
- 4. cd ~/workspace/ncappzoo/tensorflow/Inception_v1
- 5. make run

Reference: https://github.com/movidius/ncappzoo/tree/master/tensorflow/inception_v1

EXERCISE 3: CAN WE RUN ANY MODEL FROM WITHIN A SAMPLE IMAGE CLASSIFICATION APP?

YES! LET'S TRY IMAGE-CLASSIFIER APP IN NCAPPZOO

Download the sample apps onto your computer

cd ~/workspace
git clone https://github.com/movidius/ncappzoo
cd ncappzoo/apps/image-classifier

- Edit the image-classifier app to set the following flags:
 - --graph: Set the path to graph created in Exercise 2
 - --image: Path to the static image
 - --dim: Topology specific: Use 224 X 224 for GoogLeNet/Inception_v1; 227 X 227 for AlexNet
 - --mean: Dataset specific. ILSVRC uses B=102, G=117, R=123
 - --colormode: Caffe* uses BGR, TensorFlow* uses RGB
 - --labels: Absolute path to the labels file that defines the categories

EXERCISE 4: DEPLOY THE MODEL FOR THE PETS CLASSIFICATION PROBLEM ON NUMBER

CREATING THE GRAPH

- We will now go back to the deploy.prototxt / snapshotxxx.caffemodel and frozen_graph.pb files saved during training.
- On Caffe*, run the below command at the terminal to generate the graph:
- mvNCCompile deploy.prototxt -w snapshotxxx.caffemodel -s Num_of_shavecores
- On TensorFlow*, run the below command at the terminal to generate the graph:
- mvNCCompile frozen_graph.pb -s Num_of_shavecores -in=input -on=InceptionV1/Logits/Predictions/Reshape_1 -is 224 224 -o graph_name
- Exercise: Try the image-classifier app from Exercise 3 to perform static inference.

python3 image_classifier.py -graph graph_path -labels label_path -scale 0.00789 -dim 224 224 -image image_path

USE IMAGE-CLASSIFIER APP TO INFER USING THE BREEDS MODEL

- Edit the image-classifier app to set the following flags:
 - --graph: Set the path to graph created in Exercise 3
 - --image: Path to the static image
 - --dim: Topology specific: Use 224 X 224 for GoogLeNet/Inception_v1; 227 X 227 for AlexNet
 - --mean: Dataset specific. Breeds: R= 74.21, G=83.82, B= 89.90
 - --colormode: Caffe* uses BGR, TensorFlow* uses RGB
 - --labels: Absolute path to the labels file that defines the categories
 - --scale: Breeds dataset: 0.00789

INFERENCE ON CPU AND GPU USING THE INTEL® OPENVINO[™] SDK

Open Visual Inference & Neural network Optimization (OpenVINO™) toolkit

Free Download

Accelerate Computer Vision Solutions

- What it is
- A toolkit to fast-track development of high performance computer vision and deep learning into vision applications. It enables deep learning on

hardware accelerators and easy **heterogeneous** execution across Intel[®] platforms. Components include:

- Intel[®] Deep Learning Deployment Toolkit (model optimizer, inference engine)
- Optimized functions for OpenCV* and OpenVX*

https://software.intel.com/en-us/openvino-toolkit

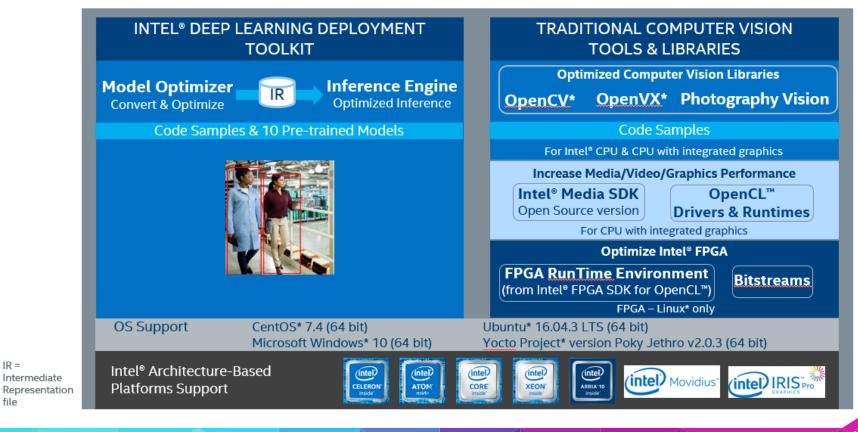
Why important

Demand is growing for intelligent vision solutions. **Deep learning revenue** is estimated to grow from \$655M in 2016 to **\$35B by 2025**¹. This requires **developer tools** to integrate computer vision, deep learning, and analytics processing capabilities into applications, so they can help **turn data into insights that fuel artificial intelligence**.

Users: Software developers, data scientists working on vision solutions for surveillance, robotics, healthcare, office automation, autonomous vehicles, &

more. OpenVINO[™] version is 2018 R1

Optimization Notice


¹Tractica 2Q 2017

Certain technical specifications and select processors/skus apply. See product site for details. OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc.

* Other names and brands may be claimed as the property of others

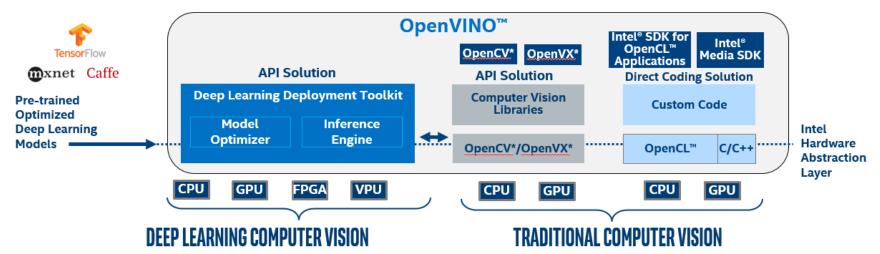
Copyright© 2018 Intel Corporation All rights reserved

WHAT'S INSIDE THE OPENVINO[™] TOOLKIT

Optimization Notice

IR =

file


Copyright© 2018 Intel Corporation All rights reserved

* Other names and brands may be claimed as the property of others

OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

DEEP LEARNING VS. TRADITIONAL COMPUTER VISION

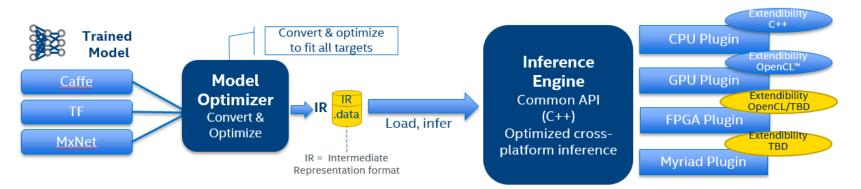
OPENVINO[™] HAS TOOLS FOR AN END TO END VISION PIPELINE

- Based on application of a large number of filters to an image to extract features.
- Features in the object(s) are analyzed with the goal of associating each input image with an output node for each type of object.
- Values are assigned to output node representing the probability that the image is the object associated with the output node.
- Based on selection and connections of computational filters to abstract key features and correlating them to an object
- Works well with well defined objects and controlled scene
- Difficult to predict critical features in larger number of objects or varying scenes

Optimization Notice

Copyright© 2018 Intel Corporation All rights reserved * Other names and brands may be claimed as the property of others OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

INTEL® DEEP LEARNING DEPLOYMENT TOOLKIT


TAKE FULL ADVANTAGE OF THE POWER OF INTEL® ARCHITECTURE

Model Optimizer

- What it is: Preparation step -> imports trained models
- Why important: Optimizes for performance/space with conservative topology transformations; biggest boost is from conversion to data types matching hardware.

Inference Engine

- What it is: High-level inference API
- Why important: Interface is implemented as dynamically loaded plugins for each hardware type. Delivers best performance for each type without requiring users to implement and maintain multiple code pathways.

Optimization Notice

Copyright© 2018 Intel Corporation All rights reserved * Other names and brands may be claimed as the property of others

VALIDATE THE BREEDS CLASSIFICATION Model on CPU and GPU

STEPS TO INFER ON CPU/GPU USING THE SDK

- Install the Intel[®] OpenVINO[™] SDK.
- Use the Model Optimizer to create the model.bin and model.xml files.
 - Caffe* command:
 - python3 mo.py -- input_model model-file.caffemodel
 - TensorFlow* command:
 - python3 mo.py -- input_model model-file.pb
- Load the Jupyter* Notebook for inference.
 - Command for CPU Inference:
 - demo –d CPU –m model.xml –l labels.txt
 - Command for GPU Inference:
 - demo –d GPU –m model.xml –l labels.txt

DEPLOY THE BREEDS CLASSIFICATION Model to an edge device (Raspberry* PI)

CALL TO ACTION

LEVERAGE THE ADVANTAGES OF INTEL'S END-TO-END AI OFFERINGS

- Training
 - Take advantage of Intel[®] Xeon[®] Scalable Processors
 - Download and Install <u>Intel[®] Optimized Caffe*</u>
 - Download and install <u>TensorFlow</u>*
 - Pre-built wheels
- Inference
 - Download and install the Intel[®] Movidius[™] Neural Compute Stick
 - Download and install the <u>Intel[®] Computer Vision SDK</u>
- Take advantage of AI courses and training available on <u>Intel[®]</u> <u>Developer Zone</u>

THINGS TO KEEP IN MIND

- You'll get access to the information covered in this session after the conference.
- 2 Visit the Intel[®] AI Academy for additional resources, training materials and videos related to today's presentation. <u>software.intel.com/AI</u>
- 3 Download XYZ (NCSDK, CVSDK, Intel AI DevCloud) here to get hands on with today's tools, anytime. <CLEAN URL>
- Check out more examples of Intel AI/Movidius NCS/Intel AI DevCloud in action on DevMesh Intel's Developer Network.
 <u>https://devmesh.intel.com/</u>

SO... WHAT'S NEXT?

- Visit the Intel[®] AI Academy for additional resources, training materials. and videos related to today's presentation. <u>software.intel.com/AI</u>
- 2 Download XYZ (NCSDK, CVSDK, Intel AI DevCloud) here to get hands on with today's tools, anytime <CLEAN URL>
- 3

Check out more examples of Intel AI/Movidius NCS/Intel AI DevCloud in action on DevMesh – Intel's Developer Network <u>https://devmesh.intel.com/</u>

