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Things to keep in  mind

Visit the Intel® AI Academy for additional resources, training materials and 
videos related to today’s presentation.
software.intel.com/AI 

1

Check out more examples of Intel AI/Movidius NCS/Intel AI DevCloud in 
action on DevMesh – Intel’s Developer Network 
https://devmesh.intel.com/

2
3 Try the Intel Distribution for Python! (https://software.intel.com/en-

us/distribution-for-python)

4

You’ll get access to the information covered in this session after the 
conference
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• Original SippyCup Github Repository
• Fork for this class: https://github.com/mspandit/sippycup
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Semantic Parsing

A computation which takes a linguistic 
expression and returns as output a 
structured, machine-interpretable 
representation of its meaning, known 
as the semantic representation



https://github.com/mspandit/sippycup

Example: Question Answering Application

“How tall is 
Obama?”

(/person/height 
/m/02mjmr)
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Example: Question Answering Application

Linguistic 
Expression
“How tall is 
Obama?”

Semantic 
Parser

Semantic 
Representation
(/person/height 

/m/02mjmr)

Executor Denotation
1.85 m
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Why Semantic Parsing is Hard
• Multiple linguistic expressions can have the same meaning
• Example: “nyc population,” “How many people live in New York City?”
• Canonicalization: Same meaning à Same semantic representation

• A single linguistic expression can have multiple meanings—
depending on the context
• Example: “How big is New York?” (area, population) X (city, state)
• Ambiguity resolution: Different meanings à Different semantic 

representations
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Why Semantic Parsing is Hard
• Linguistic expressions can be messy with typos, misspellings, loose 

syntax: “where r u”
• Internationalization compounds the problem
• Scale of the problem demands machine learning
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The Problem
• Interpret natural language arithmetic expressions
• "one plus one" 
• "minus three minus two" (lexical ambiguity)
• "three plus three minus two" 
• "two times two plus three” (syntactic ambiguity)

• Small, closed vocabulary
• Limited variety of syntactic structures
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Semantic Representation: Binary Expression Trees
one plus one ('+', 1, 1)

minus three minus two ('-', ('~', 3), 2)

three plus three minus two ('-', ('+', 3, 3), 2)

two times two plus three ('+', ('*', 2, 2), 3)
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Constituency Structure
How we group words into larger and larger phrases.
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Syntactic Parsing
Build a tree structure (a parse) over the input which describes its 
constituency structure. Assign categories to each word and phrase.
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Example Input and Denotation
minus three 
minus two

-5

minus three 
minus two

-1
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Example with Words Grouped
minus three 
minus two

((minus three) minus two) -5

minus three 
minus two

(minus (three minus two)) -1
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Example with Categories Assigned
minus three 
minus two

((minus three) minus two) ($E ($E ($UnOp minus) ($E three)) ($BinOp
minus) ($E two))

-5

minus three 
minus two

(minus (three minus two)) ($E ($UnOp minus) ($E ($E three) ($BinOp
minus) ($E two)))

-1

Category Definition

$E Expression

$UnOp Unary Operator

$BinOp Binary Operator
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Example with Local Subtrees Highlighted
minus three 
minus two

((minus three) minus two) ($E ($E ($UnOp minus) ($E three)) ($BinOp
minus) ($E two))

-5

minus three 
minus two

(minus (three minus two)) ($E ($UnOp minus) ($E ($E three) ($BinOp
minus) ($E two)))

-1

Category Definition

$E Expression

$UnOp Unary Operator

$BinOp Binary Operator
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Partial Context Free Grammar Rules
Left Hand Side Right Hand Side

$E two

$E three

$UnOp minus

$BinOp minus

$E $UnOp $E

$E $E $BinOp $E



https://github.com/mspandit/sippycup

Complete Context Free Grammar Rules
Left Hand Side Right Hand Side

$E one

$E two

$E three

$E four

$UnOp minus

$BinOp minus

$BinOp plus

$BinOp times

$E $UnOp $E

$E $E $BinOp $E
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Chomsky Normal Form (Binarized) CFG Rules
Left Hand Side Right Hand Side

$E one

$E two

$E three

$E four

$UnOp minus

$BinOp minus

$BinOp plus

$BinOp times

$E $UnOp $E

$EBO $E $BinOp

$E $EBO $E
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Semantics
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The Principle of Compositionality
The meaning of a compound expression is a function of the meanings 
of its parts and the manner of their combination.
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Status
✅ In every example, we produced some correct parse
❌ In three examples, the parse at position 0 was incorrect
👉 Conclusion: Rank candidate parses so that correct parses are 

likely to appear higher in the list.
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Linear Scoring Function
• Define multiple feature functions 𝜙"(𝑝), each taking a parse 𝑝	as 

input and returning a real number as output.
• Store a weight 𝑤" for each feature function.
• For parse 𝑝:
• 𝑠𝑐𝑜𝑟𝑒(𝑝) = 	∑"𝑤" / 𝜙"(𝑝)
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Linear Scoring Function
• Define multiple feature functions 𝜙"(𝑝), each taking a parse 𝑝	as 

input and returning a real number as output.
• Store a weight 𝑤" for each feature function.
• For parse 𝑝:
• 𝑠𝑐𝑜𝑟𝑒(𝑝) = 	∑"𝑤" / 𝜙"(𝑝)
• What if there are many features? Learn weights from training 

data!
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Natural Language Arithmetic—Summary 
• Grammar with rules in Chomsky Normal (Binarized) Form
• Semantic representation derived from syntactic parses
• Feature functions for parses
• Machine learning of feature weights from semantics or denotation
• Performance improvement on ranking parses
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The Problem
• Interpret natural language travel queries
• “birmingham al distance from indianapolish in” (misspelling)
• “directions from washington to canada” (ambiguity: which Washington?)
• “discount travel flights to Austin texas”

• Much larger vocabulary, potentially unbounded
• Large variety of syntactic structures
• Accommodate misspellings, bad syntax
• Flat—not recursive nested—semantic structure: destination, origin, 

mode, etc.
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Dataset
• Pass, Greg; Chowdhury, Abdur; Torgeson, Cayley; A Picture of 

Search
• Start: ~10 million unique search queries issued by ~650 thousand 

AOL users in 2006
• Selected queries containing one of the 600 locations named in 

Geobase (1M queries).
• Selected queries containing "from" or "to" (23K queries).
• Selected queries containing one of about 60 travel terms, or 

containing both "from" and "to" (6,588 queries).
• Many misspellings.
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Semantic Representation: Nested Key-Value Pairs
driving directions to 
Willamsburg, VA

{'domain': 'travel', 'type': 'directions', 'mode': 'car', 'destination': {'id': 
4793846, 'name': 'Williamsburg, VA, US'}}

travel time by bus from Atlantic 
City to NYC

{'domain': 'travel', 'type': 'duration', 'mode': 'bus', 'origin': {'id': 
4500546, 'name': 'Atlantic City, NJ, US'}, 'destination': {'id': 5128581, 
'name': 'New York City, NY, US'}}

airfare from Newark to 
Charleston, SC

{'domain': 'travel', 'type': 'cost', 'mode': 'air', 'origin': {'id': 5101798, 
'name': 'Newark, NJ, US'}, 'destination': {'id': 4574324, 'name': 
'Charleston, SC, US'}}

• Resolves ambiguity and canonicalizes
• (No executor in this domain)
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Training Data
Examples (travel_examples.py)
• travel boston to fr. myers fla
• how do i get from tulsa oklahoma to atlantic

city. new jersey by air 
• airbus from boston to europe
• cheap tickets to south carolina
• birmingham al distance from indianapolish in 
• transportation to the philadelphia airport 
• one day cruise from fort lauderdale florida
• directions from washington to canada
• flights from portland or to seattle wa
• honeymoon trip to hawaii

Roles
• Destination
• Origin
• Mode
• Type of information sought
• “Optional” words
• Ordering of phrases isn’t important
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Phrase Bag Grammar
• Query elements can appear in 

any order
• Travel locations (to, from)
• Travel arguments (mode, trigger, 

request type)
• Optionals can appear 

anywhere

• Annotators: modules for 
assigning categories and 
semantics to specific types of 
phrases

• Unary compositional rules
• N-ary rules

–Rule('$City', 'new york city’)
–Rule('$RouteQuery', 

'$FromLocation $ToLocation
$TravelMode’)

–Optionals
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Travel Queries—Summary
• Larger, more realistic dataset
• Annotators to “automate” rule definitions
• Rules for phrase-bag grammar with optionals
• Parsing with n-ary rules (CNF not required)
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The Problem
• "which states border texas?" 
• "how many states border the 

largest state?" 
• "what is the size of the capital 

of texas?”

• Large vocabulary
• Lexical and syntactic 

ambiguity
• Adhere to conventional rules 

for spelling and syntax
• Semantics with arbitrarily 

complex compositional 
structure

• Isomorphic with other 
domains!
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Dataset
• Questions and answers
• Geo880 corpus: http://www.cs.utexas.edu/users/ml/geo.html
• “Standard evaluation” for semantic parsing systems
• (Not representative of web search queries)
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Knowledge Base
• Small knowledge base covering Geo880 queries
• states: capital, area, population, major cities, neighboring states, 

highest and lowest points and elevations
• cities: containing state and population
• rivers: length and states traversed
• mountains: containing state and height
• roads: states traversed
• lakes: area, states traversed
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Semantic Representation: Queries for Graph-Structured 
Knowledge Base

capital of texas ('/state/texas', 'capital')
rivers that traverse utah ('.and', 'river', ('traverses', '/state/utah'))
tallest mountain ('.argmax', 'height', 'mountain')
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Current State
• In cases where we put the wrong parse at the top, the top parse 

had nonsensical semantics with an empty denotation.
👉 Downweight parses with empty denotations
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Geography Queries—Summary 
• Semantic representation: queries for graph-structured knowledge 

base
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So… What’s Next?
Visit the Intel® AI Academy for additional resources, training materials 
and videos related to today’s presentation. software.intel.com/AI 1

Check out more examples of Intel AI/Movidius NCS/Intel AI DevCloud 
in action on Intel’s Developer Network https://devmesh.intel.com/

2

4

Try the Intel Distribution for Python! 
(https://software.intel.com/en-us/distribution-for-python)

3 Build useful chatbots and voice interfaces using semantic 
parsers!
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