

Semantic Parsing: Natural
Language Understanding in Python
Milind S. Pandit
Machine Learning Solutions Manager, AI Products Group

https://github.com/mspandit/sippycup

Things to keep in mind

Visit the Intel® AI Academy for additional resources, training materials and
videos related to today’s presentation.
software.intel.com/AI

1

Check out more examples of Intel AI/Movidius NCS/Intel AI DevCloud in
action on DevMesh – Intel’s Developer Network
https://devmesh.intel.com/

2
3 Try the Intel Distribution for Python! (https://software.intel.com/en-

us/distribution-for-python)

4

You’ll get access to the information covered in this session after the
conference

https://github.com/mspandit/sippycup

References
• Stanford CS 224U: Natural Language Understanding
• Liang, Percy and Potts, Christopher, Bringing machine learning and

compositional semantics together. Annual Review of Linguistics 1(1):
355–376, 2014.

• Original SippyCup Github Repository
• Fork for this class: https://github.com/mspandit/sippycup

https://github.com/mspandit/sippycup

Semantic Parsing

A computation which takes a linguistic
expression and returns as output a
structured, machine-interpretable
representation of its meaning, known
as the semantic representation

https://github.com/mspandit/sippycup

Example: Question Answering Application

“How tall is
Obama?”

(/person/height
/m/02mjmr)

https://github.com/mspandit/sippycup

Example: Question Answering Application

Linguistic
Expression
“How tall is
Obama?”

Semantic
Parser

Semantic
Representation
(/person/height

/m/02mjmr)

Executor Denotation
1.85 m

https://github.com/mspandit/sippycup

Why Semantic Parsing is Hard
• Multiple linguistic expressions can have the same meaning
• Example: “nyc population,” “How many people live in New York City?”
• Canonicalization: Same meaning à Same semantic representation

• A single linguistic expression can have multiple meanings—
depending on the context
• Example: “How big is New York?” (area, population) X (city, state)
• Ambiguity resolution: Different meanings à Different semantic

representations

https://github.com/mspandit/sippycup

Why Semantic Parsing is Hard
• Linguistic expressions can be messy with typos, misspellings, loose

syntax: “where r u”
• Internationalization compounds the problem
• Scale of the problem demands machine learning

https://github.com/mspandit/sippycup

The Problem
• Interpret natural language arithmetic expressions
• "one plus one"
• "minus three minus two" (lexical ambiguity)
• "three plus three minus two"
• "two times two plus three” (syntactic ambiguity)

• Small, closed vocabulary
• Limited variety of syntactic structures

https://github.com/mspandit/sippycup

Semantic Representation: Binary Expression Trees
one plus one ('+', 1, 1)

minus three minus two ('-', ('~', 3), 2)

three plus three minus two ('-', ('+', 3, 3), 2)

two times two plus three ('+', ('*', 2, 2), 3)

https://github.com/mspandit/sippycup

Constituency Structure
How we group words into larger and larger phrases.

https://github.com/mspandit/sippycup

Syntactic Parsing
Build a tree structure (a parse) over the input which describes its
constituency structure. Assign categories to each word and phrase.

https://github.com/mspandit/sippycup

Example Input and Denotation
minus three
minus two

-5

minus three
minus two

-1

https://github.com/mspandit/sippycup

Example with Words Grouped
minus three
minus two

((minus three) minus two) -5

minus three
minus two

(minus (three minus two)) -1

https://github.com/mspandit/sippycup

Example with Categories Assigned
minus three
minus two

((minus three) minus two) ($E ($E ($UnOp minus) ($E three)) ($BinOp
minus) ($E two))

-5

minus three
minus two

(minus (three minus two)) ($E ($UnOp minus) ($E ($E three) ($BinOp
minus) ($E two)))

-1

Category Definition

$E Expression

$UnOp Unary Operator

$BinOp Binary Operator

https://github.com/mspandit/sippycup

Example with Local Subtrees Highlighted
minus three
minus two

((minus three) minus two) ($E ($E ($UnOp minus) ($E three)) ($BinOp
minus) ($E two))

-5

minus three
minus two

(minus (three minus two)) ($E ($UnOp minus) ($E ($E three) ($BinOp
minus) ($E two)))

-1

Category Definition

$E Expression

$UnOp Unary Operator

$BinOp Binary Operator

https://github.com/mspandit/sippycup

Partial Context Free Grammar Rules
Left Hand Side Right Hand Side

$E two

$E three

$UnOp minus

$BinOp minus

$E $UnOp $E

$E $E $BinOp $E

https://github.com/mspandit/sippycup

Complete Context Free Grammar Rules
Left Hand Side Right Hand Side

$E one

$E two

$E three

$E four

$UnOp minus

$BinOp minus

$BinOp plus

$BinOp times

$E $UnOp $E

$E $E $BinOp $E

https://github.com/mspandit/sippycup

Chomsky Normal Form (Binarized) CFG Rules
Left Hand Side Right Hand Side

$E one

$E two

$E three

$E four

$UnOp minus

$BinOp minus

$BinOp plus

$BinOp times

$E $UnOp $E

$EBO $E $BinOp

$E $EBO $E

https://github.com/mspandit/sippycup

Semantics

https://github.com/mspandit/sippycup

The Principle of Compositionality
The meaning of a compound expression is a function of the meanings
of its parts and the manner of their combination.

https://github.com/mspandit/sippycup

Status
✅ In every example, we produced some correct parse
❌ In three examples, the parse at position 0 was incorrect
👉 Conclusion: Rank candidate parses so that correct parses are

likely to appear higher in the list.

https://github.com/mspandit/sippycup

Linear Scoring Function
• Define multiple feature functions 𝜙"(𝑝), each taking a parse 𝑝	as

input and returning a real number as output.
• Store a weight 𝑤" for each feature function.
• For parse 𝑝:
• 𝑠𝑐𝑜𝑟𝑒(𝑝) = 	∑"𝑤" / 𝜙"(𝑝)

https://github.com/mspandit/sippycup

Linear Scoring Function
• Define multiple feature functions 𝜙"(𝑝), each taking a parse 𝑝	as

input and returning a real number as output.
• Store a weight 𝑤" for each feature function.
• For parse 𝑝:
• 𝑠𝑐𝑜𝑟𝑒(𝑝) = 	∑"𝑤" / 𝜙"(𝑝)
• What if there are many features? Learn weights from training

data!

https://github.com/mspandit/sippycup

Natural Language Arithmetic—Summary
• Grammar with rules in Chomsky Normal (Binarized) Form
• Semantic representation derived from syntactic parses
• Feature functions for parses
• Machine learning of feature weights from semantics or denotation
• Performance improvement on ranking parses

https://github.com/mspandit/sippycup

The Problem
• Interpret natural language travel queries
• “birmingham al distance from indianapolish in” (misspelling)
• “directions from washington to canada” (ambiguity: which Washington?)
• “discount travel flights to Austin texas”

• Much larger vocabulary, potentially unbounded
• Large variety of syntactic structures
• Accommodate misspellings, bad syntax
• Flat—not recursive nested—semantic structure: destination, origin,

mode, etc.

https://github.com/mspandit/sippycup

Dataset
• Pass, Greg; Chowdhury, Abdur; Torgeson, Cayley; A Picture of

Search
• Start: ~10 million unique search queries issued by ~650 thousand

AOL users in 2006
• Selected queries containing one of the 600 locations named in

Geobase (1M queries).
• Selected queries containing "from" or "to" (23K queries).
• Selected queries containing one of about 60 travel terms, or

containing both "from" and "to" (6,588 queries).
• Many misspellings.

https://github.com/mspandit/sippycup

Semantic Representation: Nested Key-Value Pairs
driving directions to
Willamsburg, VA

{'domain': 'travel', 'type': 'directions', 'mode': 'car', 'destination': {'id':
4793846, 'name': 'Williamsburg, VA, US'}}

travel time by bus from Atlantic
City to NYC

{'domain': 'travel', 'type': 'duration', 'mode': 'bus', 'origin': {'id':
4500546, 'name': 'Atlantic City, NJ, US'}, 'destination': {'id': 5128581,
'name': 'New York City, NY, US'}}

airfare from Newark to
Charleston, SC

{'domain': 'travel', 'type': 'cost', 'mode': 'air', 'origin': {'id': 5101798,
'name': 'Newark, NJ, US'}, 'destination': {'id': 4574324, 'name':
'Charleston, SC, US'}}

• Resolves ambiguity and canonicalizes
• (No executor in this domain)

https://github.com/mspandit/sippycup

Training Data
Examples (travel_examples.py)
• travel boston to fr. myers fla
• how do i get from tulsa oklahoma to atlantic

city. new jersey by air
• airbus from boston to europe
• cheap tickets to south carolina
• birmingham al distance from indianapolish in
• transportation to the philadelphia airport
• one day cruise from fort lauderdale florida
• directions from washington to canada
• flights from portland or to seattle wa
• honeymoon trip to hawaii

Roles
• Destination
• Origin
• Mode
• Type of information sought
• “Optional” words
• Ordering of phrases isn’t important

https://github.com/mspandit/sippycup

Phrase Bag Grammar
• Query elements can appear in

any order
• Travel locations (to, from)
• Travel arguments (mode, trigger,

request type)
• Optionals can appear

anywhere

• Annotators: modules for
assigning categories and
semantics to specific types of
phrases

• Unary compositional rules
• N-ary rules

–Rule('$City', 'new york city’)
–Rule('$RouteQuery',

'$FromLocation $ToLocation
$TravelMode’)

–Optionals

https://github.com/mspandit/sippycup

Travel Queries—Summary
• Larger, more realistic dataset
• Annotators to “automate” rule definitions
• Rules for phrase-bag grammar with optionals
• Parsing with n-ary rules (CNF not required)

https://github.com/mspandit/sippycup

The Problem
• "which states border texas?"
• "how many states border the

largest state?"
• "what is the size of the capital

of texas?”

• Large vocabulary
• Lexical and syntactic

ambiguity
• Adhere to conventional rules

for spelling and syntax
• Semantics with arbitrarily

complex compositional
structure

• Isomorphic with other
domains!

https://github.com/mspandit/sippycup

Dataset
• Questions and answers
• Geo880 corpus: http://www.cs.utexas.edu/users/ml/geo.html
• “Standard evaluation” for semantic parsing systems
• (Not representative of web search queries)

https://github.com/mspandit/sippycup

Knowledge Base
• Small knowledge base covering Geo880 queries
• states: capital, area, population, major cities, neighboring states,

highest and lowest points and elevations
• cities: containing state and population
• rivers: length and states traversed
• mountains: containing state and height
• roads: states traversed
• lakes: area, states traversed

https://github.com/mspandit/sippycup

Semantic Representation: Queries for Graph-Structured
Knowledge Base

capital of texas ('/state/texas', 'capital')
rivers that traverse utah ('.and', 'river', ('traverses', '/state/utah'))
tallest mountain ('.argmax', 'height', 'mountain')

https://github.com/mspandit/sippycup

Current State
• In cases where we put the wrong parse at the top, the top parse

had nonsensical semantics with an empty denotation.
👉 Downweight parses with empty denotations

https://github.com/mspandit/sippycup

Geography Queries—Summary
• Semantic representation: queries for graph-structured knowledge

base

https://github.com/mspandit/sippycup

So… What’s Next?
Visit the Intel® AI Academy for additional resources, training materials
and videos related to today’s presentation. software.intel.com/AI 1

Check out more examples of Intel AI/Movidius NCS/Intel AI DevCloud
in action on Intel’s Developer Network https://devmesh.intel.com/

2

4

Try the Intel Distribution for Python!
(https://software.intel.com/en-us/distribution-for-python)

3 Build useful chatbots and voice interfaces using semantic
parsers!

https://github.com/mspandit/sippycup

Disclaimer
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or
service activation. Performance varies depending on system configuration. No computer system can be absolutely secure.
Check with your system manufacturer or retailer or learn more at https://www.intel.com/.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider
your purchase. For more complete information about performance and benchmark results, visit
http://www.intel.com/benchmarks.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the
referenced web site and confirm whether referenced data are accurate.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018 Intel Corporation

