

FROM TRAINING TO INFERENCE: CREATE AN END-TO-END DEEP LEARNING PROJECT USING OPTIMIZED HARDWARE AND SOFTWARE FROM INTEL

San Francisco, 23/24th May 2018

LEGAL NOTICES & DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation.

AGENDA

- Intel[®] AI Academy
- Intel[®] AI Portfolio
- Overview of Intel[®] Optimized Caffe* and Tensorflow*
- Intel AI Use Cases
- Training on Tensorflow* with Intel optimizations
- Validation on the Intel[®] Movidius Neural Compute Stick (NCS) Demo
- Deploy to an edge device (Raspberry Pi) Demo

QUESTIONS? ASK US!

SULAIMON IBRAHIM Developer Evangelist

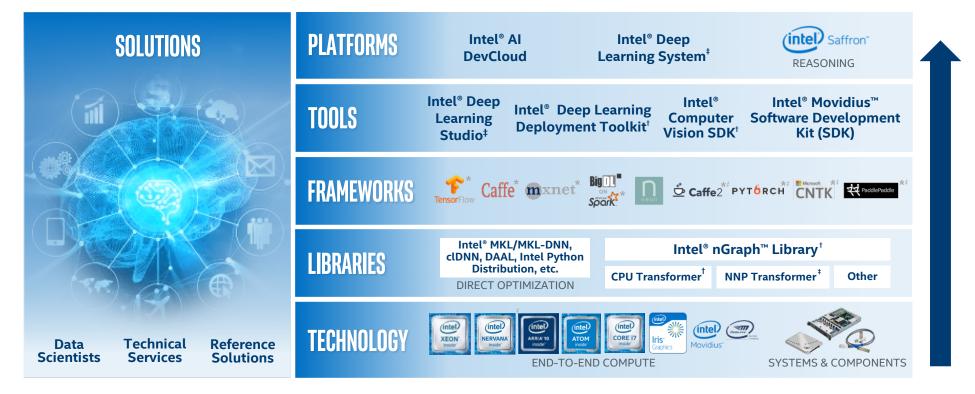
Sulaimon.ibrahim@intel.com

RUDY CAZABON Developer Evangelist

rudy.cazabon@intel.com

MEGHANA RAO Developer Evangelist

meghana.s.rao@intel.com


MICHAEL HERNANDEZ Developer Evangelist

michael.j.hernandez@intel.com

INTEL[®] AI PORTFOLIO

¹Beta available [‡] Future *Other names and brands may be claimed as the property of others.

INTEL AI FRAMEWORKS

Popular DL Frameworks are now optimized for CPU!

CHOOSE YOUR FAVORITE FRAMEWORK

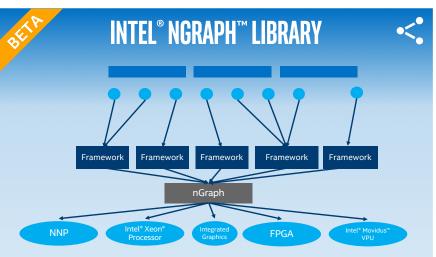
See installation guides at <u>ai.intel.com/framework-optimizations/</u>

and others to be enabled via Intel® nGraph™ Library

SEE ALSO: Machine Learning Libraries for Python (Scikit-learn, Pandas, NumPy), R (Cart, randomForest, e1071), Distributed (MILib on Spark, Mahout) *Limited availability today Other names and brands may be claimed as the property of others.

INTEL AI LIBRARIES

DIRECT OPTIMIZATION


MKL-DNN Open-source optimized deep neural network functions for new frameworks

Open-source optimized deep clDNN neural network functions for

Intel GPUs

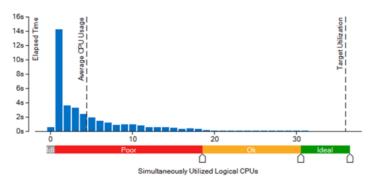
Data Analytics AccelerationDAAL Library for analytics and machine learning

Intel Python Distribution Optimized distribution of most popular & fastest growing language for machine learning

Translates participating deep learning framework compute graphs into hardware-optimized executables for many different targets (CPU, GPU, NNP, FPGA, VPU, etc.)

(intel) AI 8

DEEP LEARNING FRAMEWORK OPTIMIZED FOR IA: CAFFE*


INITIAL CIFAR-10 RUN IN CAFFE—VTUNE ANALYSIS

Elapsed Time ⁽²⁾: 37.026s

⊙ <u>CPU Time</u> [®] :	1306.422s
<u>Effective Time</u> [®] :	162.646s
	1134.014s 🏲
Imbalance or Serial Spinning (OpenMP) ⁽⁰⁾ :	1100.758s 🏲
Lock Contention (OpenMP) [®] :	0.019s
Other [®] :	33.238s
Overhead Time [®] :	9.762s
Total Thread Count:	38
Paused Time [®] :	0s

CPU Usage Histogram

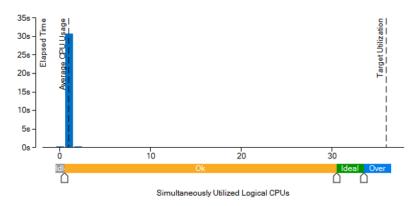
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

Hardware Details:

- 36 available physical cores
- Dual-socket Intel Xeon processor E5-2699 v3 at 2.30 GHz with 18 cores/socket (HT disabled)
- 64 GB of DDR4 @ 2,133 MHz

Conclusions:

- multithreading scalability
- Only used in GEMM operations of MKL



INITIAL CIFAR-10 RUN IN CAFFE—VTUNE ANALYSIS

\odot	Elapsed Time ⁽²⁾ : 31.149s						
	O CPU Time [®] :	31.240s					
	Total Thread Count:	3					
	Paused Time [®] :	0s					

OPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

New Run Details:

- Export OMP_NUM_THREADS=1
- Same hardware and execution setup
- Execution time reduced ($37.0s \rightarrow 31.2s$)

Conclusions:

- Threads re-initialization and data distribution introduce significant (15.7%) overhead
- Only used in GEMM operations of MKL

CURRENT OPTIMIZATIONS

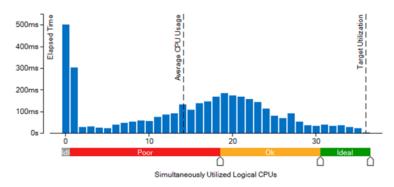
LEVERAGE OPTIMIZATION TOOLS & LIBRARIES

SCALAR, SERIAL OPTIMIZATIONS

VECTORIZATION

THREAD PARALLELIZATION

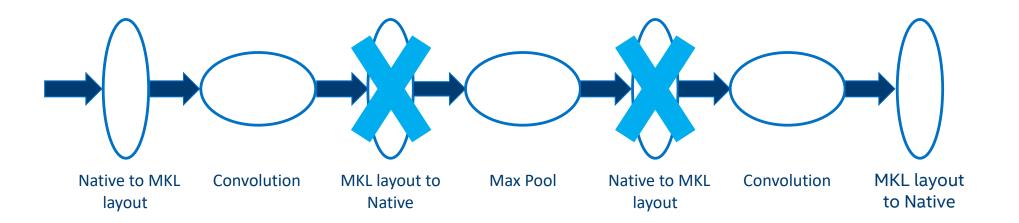
SCALE FROM MULTICORE TO MANY CORE


https://software.intel.com/en-us/articles/caffe-optimized-for-intel-architectureapplying-modern-code-techniques

Elapsed Time ⁽²⁾: 3.602s

⊘ <u>CPU Time</u> [®] :	111.070s		
Effective Time [®] :	50.819s		
	58.437s 🍢		
Imbalance or Serial Spinning (OpenMP) ⁽⁰⁾ :	55.477s 🏲		
Lock Contention (OpenMP) [®] :	0.340s		
Other [®] :	2.620s		
Overhead Time [®] :	1.814s		
Total Thread Count:	37		
Paused Time [®] :	0s		

CPU Usage Histogram


This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

DEEP LEARNING FRAMEWORK OPTIMIZED FOR IA: TENSORFLOW*

MINIMIZE CONVERSIONS OVERHEAD

- End to end optimization can reduce conversions
- Staying in optimized layout as long as possible becomes one of the tuning goals
- Minimize the number of back and forth conversions
 - Use of graph optimization techniques

OPTIMIZING TENSORFLOW* & OTHER DL FRAMEWORKS FOR INTEL® ARCHITECTURE

Leverage High Performant Compute Libraries and Tools

e.g. Intel[®] Math Kernel Library, Intel[®] Python, Intel[®] Compiler etc.

Data Format/Shape:

Right format/shape for max performance: blocking, gather/scatter

Data Layout Minimize cost of data layout conversions

Parallelism

Use all cores, eliminate serial sections, load imbalance

Memory Allocation unique characteristics and ability to reuse buffers

Data Layer Optimizations

parallelization, vectorization, IO

Optimize Hyper Parameters

- e.g. batch size for more parallelism
- learning rate and optimizer to ensure accuracy/convergence

INITIAL PERFORMANCE GAINS ON INTEL® XEON® PROCESSORS

(2 SOCKETS INTEL® MICROARCHITECTURE CODE NAME BROADWELL-22 CORES)

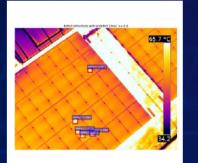
Benchmark	Metric	Batch Size	Baseline Performance Training	Baseline Perf Inference	Optimized Perf Training	Optimized Perf Inference	Speedup Training	Speedup Inference
ConvNet-Alexnet	Images/ sec	128	33.52	84.2	524	1696	15.6x	20.2x
ConvNet-GoogleNet v1	Images/ sec	128	16.87	49.9	112.3	439.7	6.7x	8.8x
ConvNet-VGG	Images/ sec	64	8.2	30.7	47.1	151.1	5.7x	4.9x

- Baseline using TensorFlow* 1.0 release with standard compiler knobs
- Optimized performance using TensorFlow with Intel optimizations and built with
 - bazel build --config=mkl --copt="-DEIGEN_USE_VML"

ADDITIONAL PERFORMANCE GAINS FROM PARAMETERS TUNING

- Data Format: CPU prefers NCHW data format
- Intra_op, inter_op and OMP_NUM_THREADS: set for best core utilization
- Batch size: higher batch size provides for better parallelism
 - Too high a batch size can increase working set and impact cache/memory perf

Best Setting for Intel[®] Xeon[®] Processors (Intel[®] microarchitecture code name Broadwell –2 Socket–44 Cores)


Benchmark	Data Format	Inter_op	Intra_op	KMP_BLOCKTIME	Batch size
ConvNet- AlexnetNet	NCHW	1	44	30	2048
ConvNet-Googlenet V1	NCHW	2	44	1	256
ConvNet-VGG	NCHW	1	44	1	128

INTEL AI USE CASES

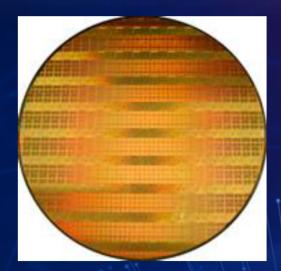
HIGH RISK INSPECTION BY DRONES: 1 CPU NODE

Chong Y., Yiqiang Z and Jiong G., "Automatic Defect Inspection Using Deep Learning for Solar Farm" Dec. 2017. https://software.intel.com/en-us/articles/automatic-defect-inspection-using-deep-learning-for-solar-farm



DRUG DESIGN: 1 CPU NODE

- Deep learning training with huge dataset (4 Million compound-protein interactions)
- Stunning accuracy (98.2%)
- •Training in 1.1 8.8 days



M. Hamanaka et al, "CGBVS-DNN: Prediction of Compound-protein Interactions Based Deep Learning" http://onlinelibrary.wiley.com/doi/10.1002/minf.201600045/full

SILICON PACKAGE DEFECT DETECTION: 8 CPU NODES

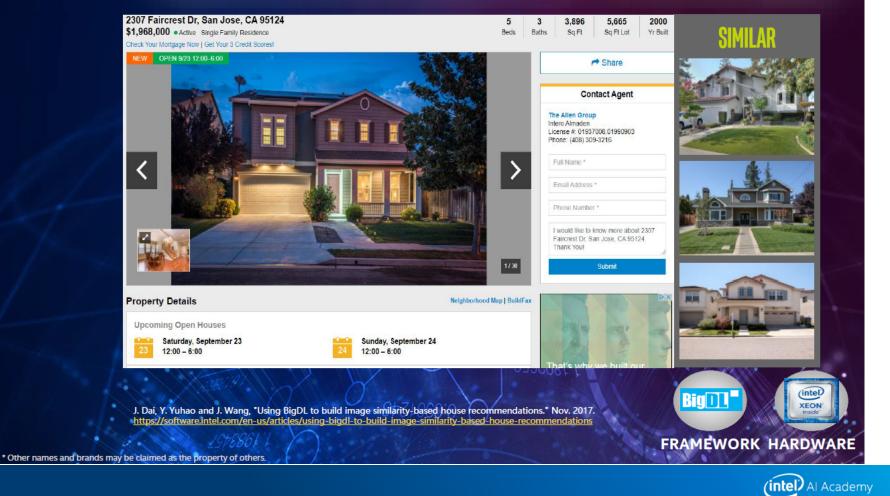
Training within one hour on 8 CPU nodes.

Z. Yiqiang and J. Gong, "Manufacturing package fault detection using deep learning." Aug. 2017. https://software.intel.com/en-us/articles/manufacturing-package-fault-detection-using-deep-learning

Postprocessing

Weak passed result

> Rejected result


Human Review

Passed result

Rejected result

HOME BUYING ASSISTANT: 10 CPU NODES

CREDIT CARD ANOMALY DETECTION: 32 CPU NODES

INTEL[®] AI DEVCLOUD

Intel[®] AI DevCloud

- A cloud hosted hardware and software platform available to 200K Intel[®] AI Academy members to learn, sandbox and get started on Artificial Intelligence projects
- Intel[®] Xeon[®] Scalable Processors(Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz 24 cores with 2-way hyper-threading, 96 GB of on-platform RAM (DDR4), 200 GB of file storage
- 4 weeks of initial access, with extension based upon project needs
- Technical support via Intel[®] AI Academy Support Community
- Available now to all AI Academy Members

https://software.intel.com/ai-academy/tools/devcloud

(intel) 25

Optimized Software – No install required

- Intel[®] distribution of Python* 2.7 and 3.6 including NumPy, SciPy, pandas, scikitlearn, Jupyter, matplotlib, and mpi4py, Keras
- Intel[®] Optimized Caffe*
- Intel[®] Optimized TensorFlow*
- Intel Optimized Theano*
- Intel Nervana Neon*
- More Frameworks as they are optimized
 - MXNet
 - Py-Faster-RCnn

Intel[®] Parallel Studio XE Cluster Edition and the tools and libraries included with it:

- Intel C, C++ and Fortran compilers
- Intel[®] MPI library
- Intel[®] OpenMP* library
- Intel[®] Threading Building Blocks library
- Intel[®] Math Kernel Library-DNN
- Intel[®] Data Analytics Acceleration Library

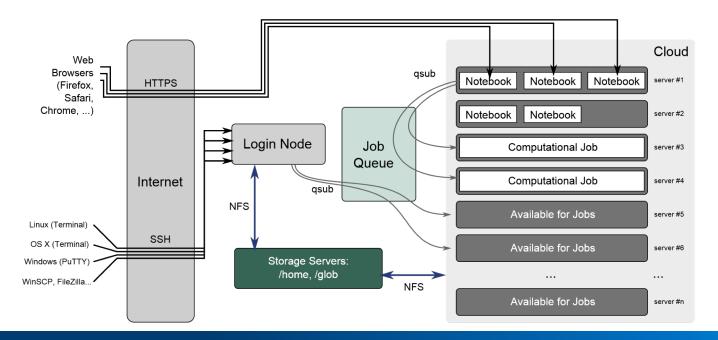
REQUEST ACCESS

Intel[®] AI DevCloud

Get Dev Cloud Access

- Click the request access button to open the application page
- Fill in the required information and submit the application
- After submitting your application, you will normally receive an email within 2 business days, including account number, node & user's guide
- Try not to loose this email it has your user and UUID = PW

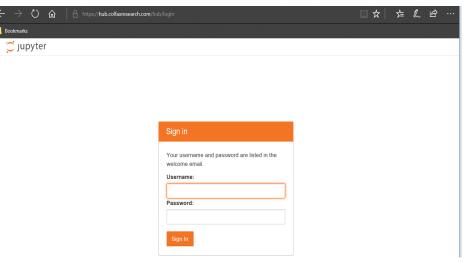
Determine
Control
Contro
Control
Control


https://software.intel.com/en-us/ai-academy/tools/devcloud

CONNECT VIA TERMINAL AND JUPYTER NOTEBOOKS

Intel[®] AI DevCloud

Once Connected:


- You are officially connected to the Login Node
- This is not your compute node --- c009 is always your login node

JupyterHUB Notebook

- Navigate to <u>hub.colfaxresearch.com</u>
- Username: <available on your DevCloud account>
- Password: < available on your DevCloud account :
- Refer <u>Welcome.ipynb</u> notebook in your home directory upon login

WE WILL USE THE JUPYTER NOTEBOOK INTERFACE FOR TODAY'S SESSION

HANDS-ON CODING: TRAINING A CNN USING THE INTEL® AI DEVCLOUD

PROBLEM STATEMENT

Animal ID Startup

Natural and man-made disasters create havoc and grief. Lost and abandoned pets/livestock only add to the emotional toll.

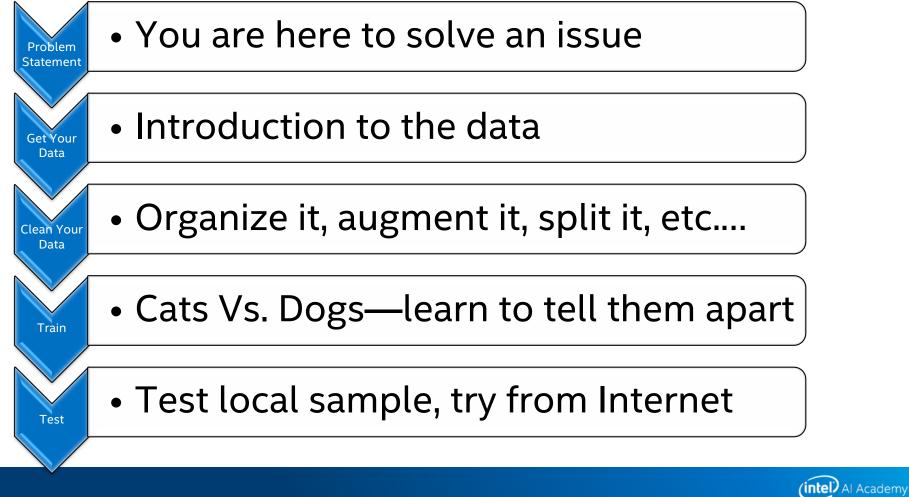
How do you find your beloved dog after a flood? What happens to your daughter's horse?

Our charter is to unite pets with their families.

YOUR JOB: DATA SCIENTIST

We need your help creating a way to identify animals. Initial product is focused on cat/dog breed identification. Your app will be used by rescuers and the public to document found animals and to search for lost pets.

Welcome aboard!



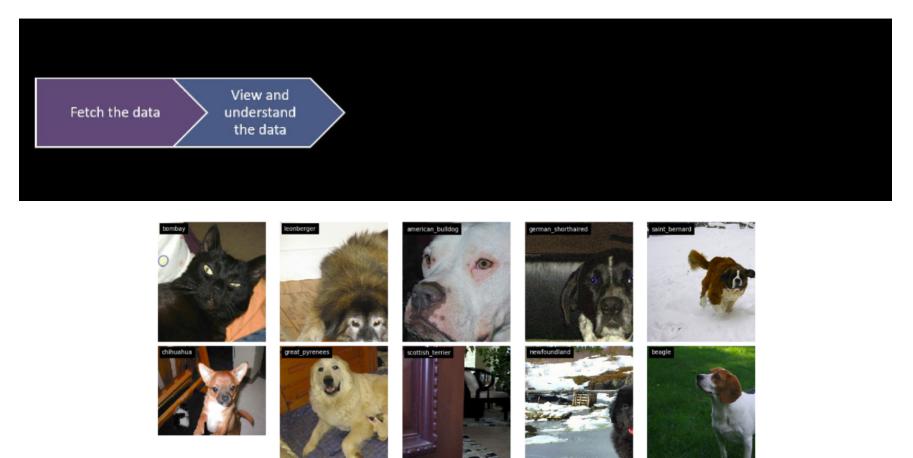
TENSORFLOW* WORKFLOW

TRAINING BREEDS

BASIC STEPS TO HANDS ON WORKSHOP

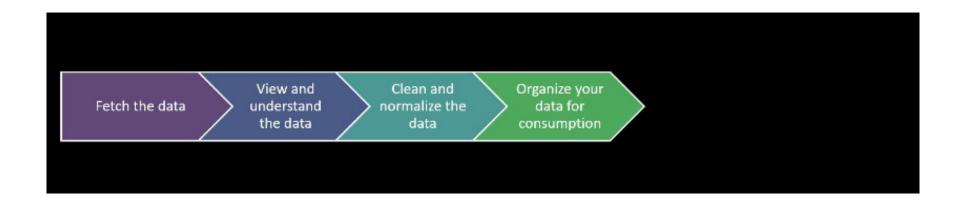
PART 1 - FETCH THE DATA

The Oxford Pets Database


- 37 categories
- ~200 images of each class.
- 25 Dogs
- 12 cats
- <u>Paper talks about Data and their</u> <u>techniques</u>

ISSUE COPY COMMAND cp -r /data/aiworkshop/TF_Slim_Breeds/ .

PART 1 - VIEW THE BASELINE DATA


PART 1 - CLEAN AND NORMALIZE THE DATA

- Extract, Transform and Load (ETL)
 - Data cleaning Eliminates noise and resolves inconsistencies in the data.
 - **Data integration** Migrates data from various different sources into one coherent source, such as a data warehouse.
 - Data transformation Standardizes or normalizes any form of data.
 - Data reduction Reduces the size of the data by aggregating it.
- Prepare data as expected by topology
- Ensure you have enough processing and storage capacity

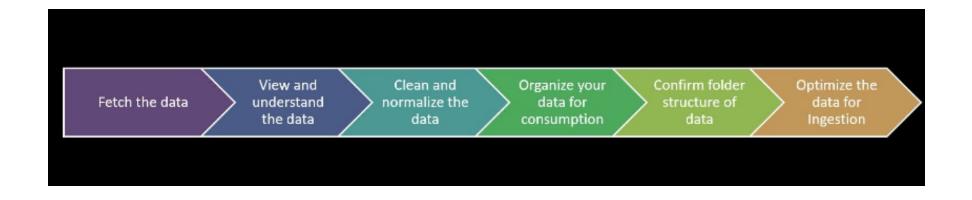
PART 1 - ORGANIZE DATA FOR CONSUMPTION BY TENSORFLOW

PART 1: ORGANIZE DATA FOR CONSUMPTION - CATEGORIZE

•	Data organization is framework specific
•	Tensorflow expects images to be
	organized into categories
•	Once complete, each category would look

something like this (and there are 39 categories)

breeds/ sorted/ british shorthair/ British Shorthair 184.jpg British Shorthair 269.jpg British Shorthair 37.jpg British Shorthair 71.jpg British_Shorthair_167.jpg japanese chin/ japanese chin 167.jpg japanese chin 182.jpg japanese chin 191.jpg japanese chin 38.jpg japanese chin 17.jpg wheaten terrier/ wheaten terrier 74.jpg wheaten terrier 128.jpg wheaten terrier 137.jpg wheaten terrier 4.jpg wheaten terrier 9.jpg



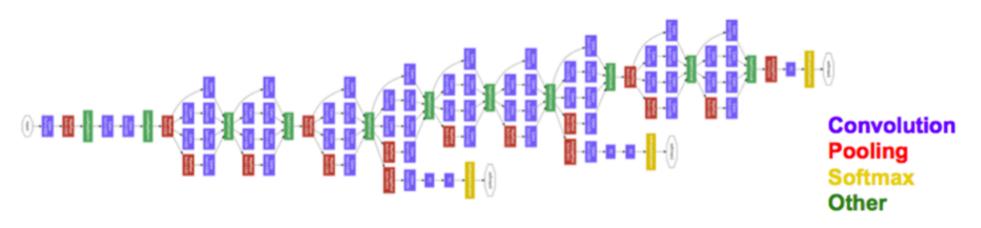
PART 1 - CONFIRM FOLDER STRUCTURE

PART 1: OPTIMIZE DATA FOR INGESTION

PART 1: OPTIMIZE DATA FOR INGESTION - CREATE TFRECORDS

- TFRecord is the Tensorflow recommended format for ingestion
- It is a sequence of binary strings
- If the dataset is too large, we could create multiple shards of the TFRecords to make it more manageable
- We create 2 TFRecords One for training and another for validation

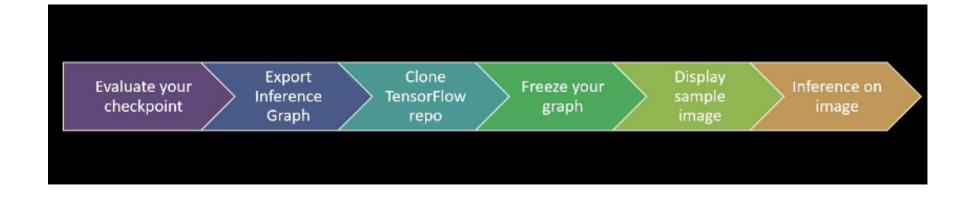
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database


PART 2 - TRAINING

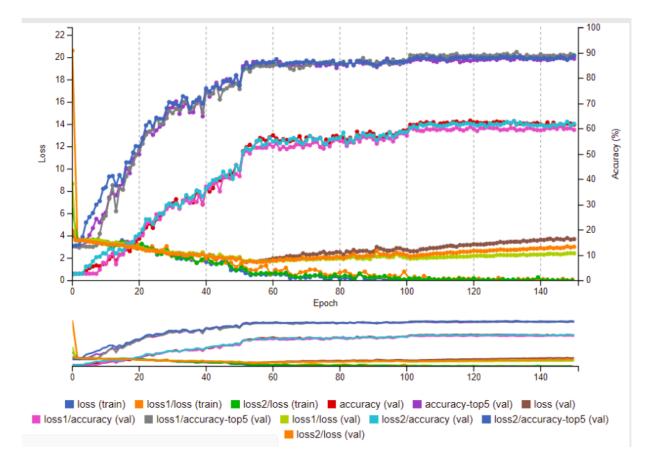
- **Step 1: Choose the right topology**
- **Step 2: Setup a pre-trained model to use breeds dataset**
- **Step 3: Evaluate, freeze and test results**

PART 2: STEP 1 - SELECT THE RIGHT TOPOLOGY

- Criteria:
 - Time to train: Depends on number of layers and computation required
 - Size: Keep in mind the edge device you want to deploy to, networks it supports and resources like memory
 - Inference speed: Tradeoff between accuracy and latency
 - GoogLeNet Inception_V1 was our topology of choice


PART 2: <u>Step 2 - Training From Pre-trained Model</u>

- Clone tensorflow/models github repo
 - We use transfer learning using a CNN pre-trained on ISLVRC-2012-CLS image classification dataset (<u>https://github.com/tensorflow/models</u>)
- Modify/Add files to slim repo to work with breeds dataset
- Initiate training and review live training logs
 - When using a pre-trained model on a different dataset, note that the final layer will change to indicate the new set of categories
 - Indicate which subset of layers to retrain while keeping others frozen
 - View results



PART 2: STEP 3 - EVALUATE, FREEZE GRAPH AND TEST

PART 2: RESULTS ON GOOGLENET INCEPTION V1 USING BREEDS


SAVE FILES FOR INFERENCE

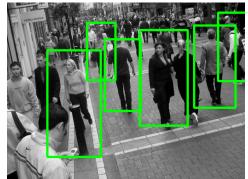
• Save the frozen graph (.pb file)

INFERENCE USING THE INTEL® MOVIDIUS™ NEURAL COMPUTE STICK

I'll scratch you down to your motors, if you come any closer!

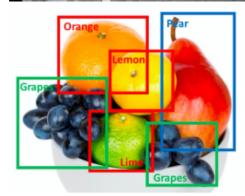
Let's look at a larger scale...

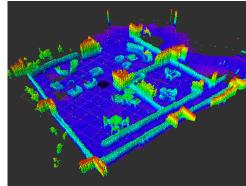
20 billion connected devices by 2020¹



generating billions of petabytes of data traffic between devices & the cloud

1 Source: http://www.gartner.com/newsroom/id/3598917



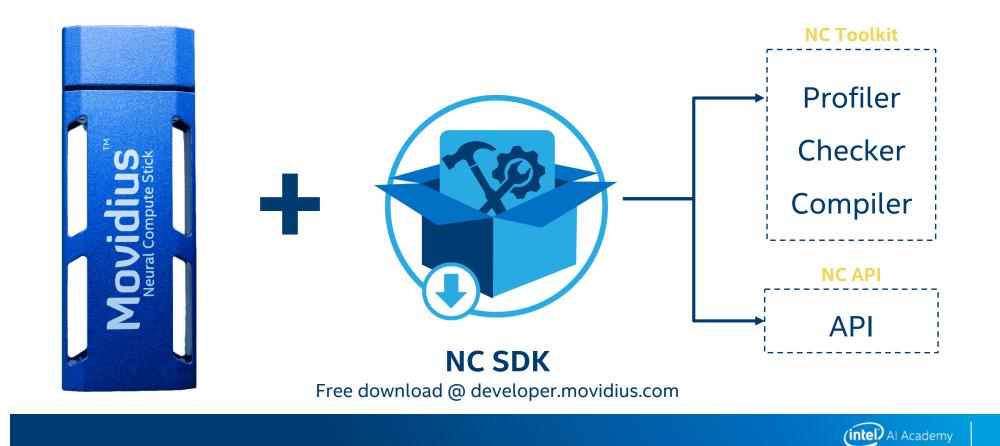


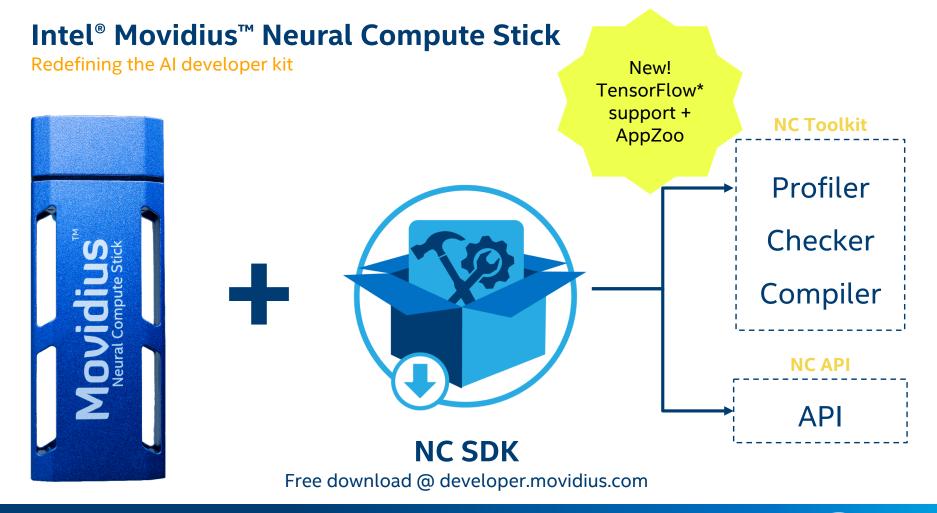
Game-changing intelligent devices

Powered by Movidius VPU

Intel[®] Movidius[™] Neural Compute Stick

Redefining the AI developer kit

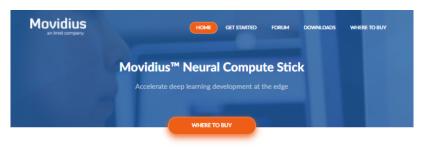



- Neural Network Accelerator in USB Stick Form Factor
- No additional heat-sink, no fan, no cables, no additional power supply
- Prototype, tune, validate and deploy deep neural networks at the edge
- Features the same Intel[®] Movidius[™] Myriad[™] Vision Processing Unit (VPU) used in drones, surveillance cameras, VR headsets, and other low-power intelligent and autonomous products

Intel® Movidius™ Neural Compute Stick

Redefining the AI developer kit

*Other names and brands may be claimed as the property of others.



Explore developer.movidius.com

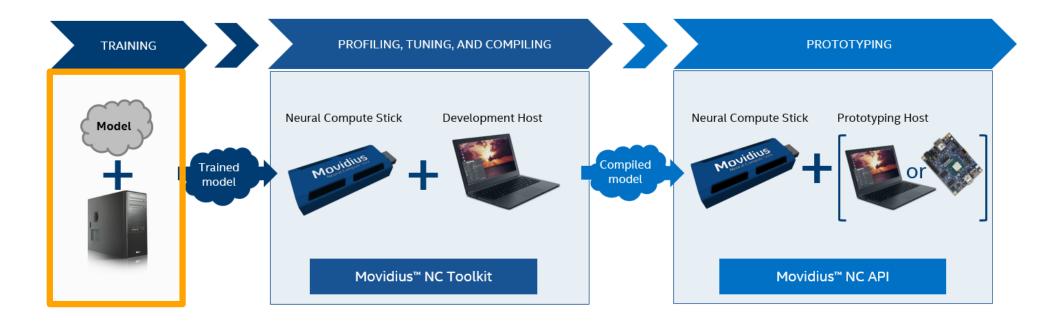
A developer-friendly website

Try out the following pages:


- Main page
- Getting started
- Downloads
- Docs
- Forums
- Where to buy

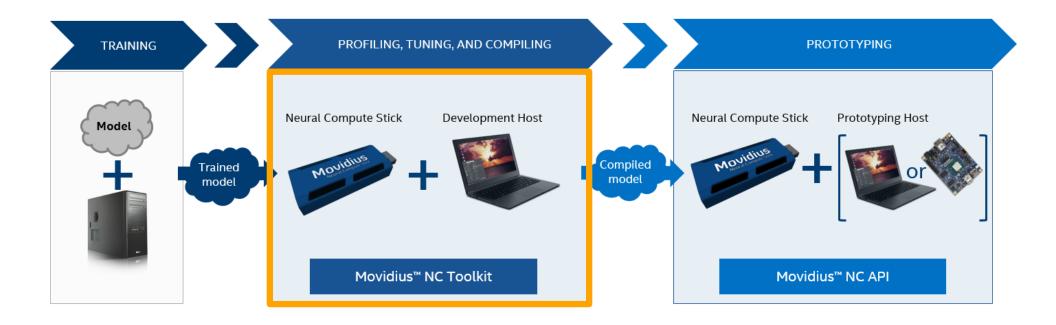
What is the Neural Compute Stick?

The Movidus¹⁴⁴ Neural Compute Stick (NCS) is a tiny fanless deep learning device that you can use to learn AI programming at the edge. NCS is powered by the same low power high performance Movidua¹⁴⁴ Vision Processing Unit (VPU) that can be found in millions of smart security cameras, gesture controlled drones, industrial machine vision equipment, and more.

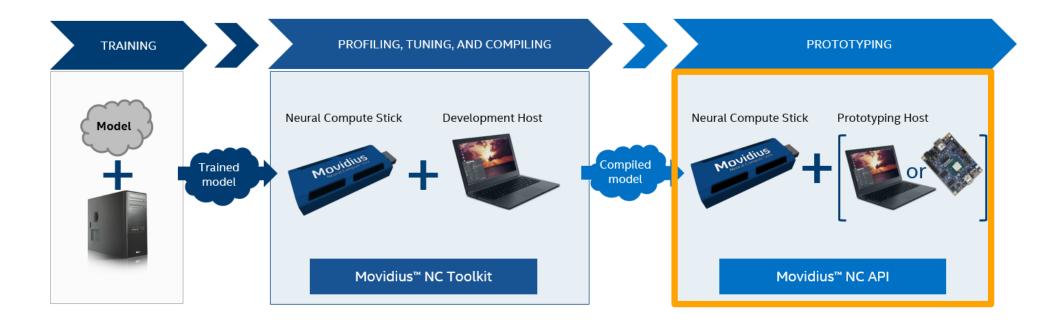

What can you do with the NCS?

The Movidius Neural Compute Stick enables rapid prototyping, validation and deployment of Deep Neural Network (DNN) inference applications at the edge. Its Iow-power VPU architecture enables an entirely new segment of AI applications that aren't reliant on a connection to the cloud.

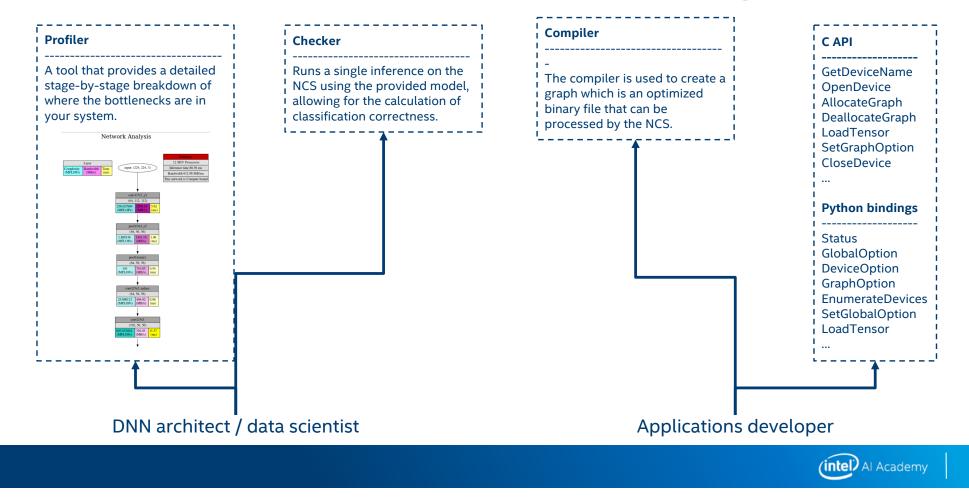
The NCS combined with Movidius³⁴⁴ Neural Compute SDK allows deep learning developers to profile, tune, and deploy Convolutional Neural Network (CNN) on low-power applications that require real-time inferencing.



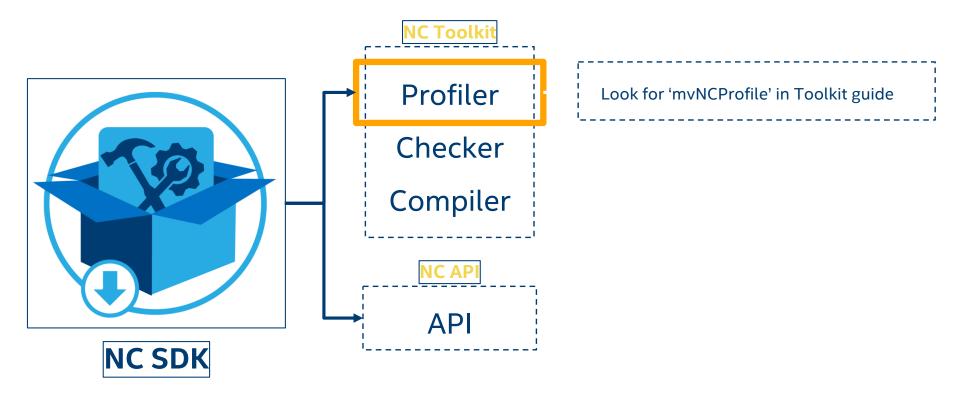
Intel[®] Movidius[™] Software Development Kit (SDK) workflow



Intel[®] Movidius[™] Software Development Kit (SDK) workflow

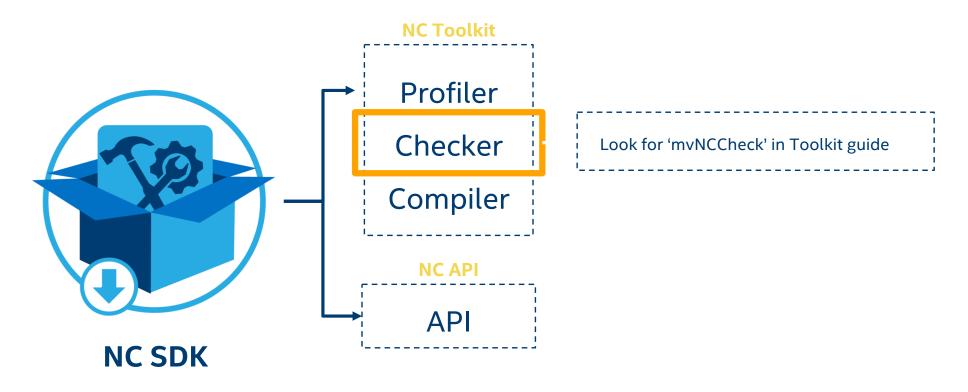


Intel[®] Movidius[™] Software Development Kit (SDK) workflow

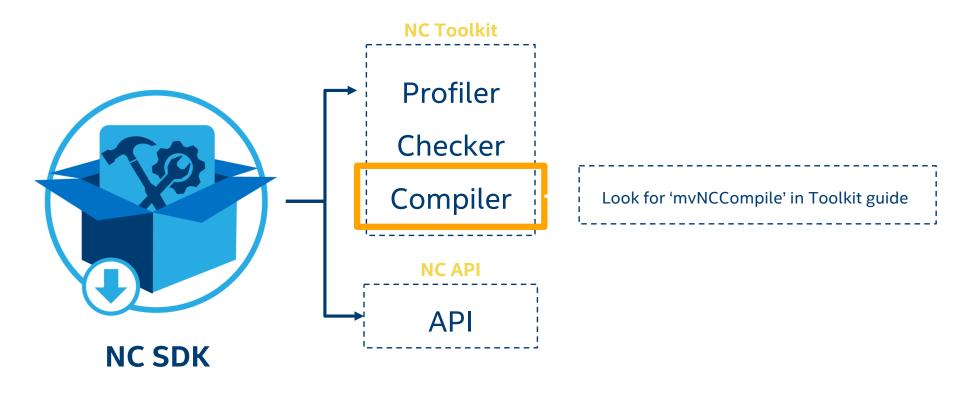


What can I do with the Intel[®] Movidius[™] Neural Compute Stick ?

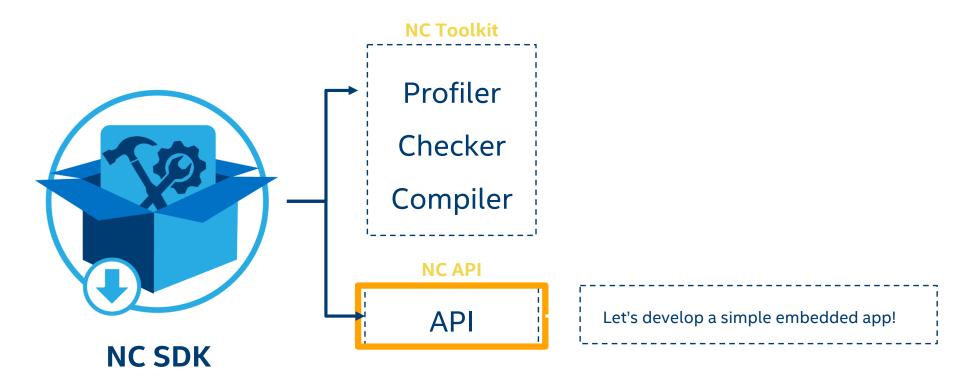
NC SDK Profiler


Get a better insight into your network's complexity, bandwidth & execution time

NC SDK Checker


Run a single inference on the NCS and compare results with that of Caffe

NC SDK Compile


Convert your network into a binary graph file that can be loaded onto the NCS

NC SDK API framework

Develop you own embedded application with deep-learning accelerated image processing

INFERENCE ON CPU AND GPU USING THE INTEL® OPENVINO[™] SDK

Open Visual Inference & Neural network Optimization (OpenVINO[™]) toolkit

Accelerate Computer Vision Solutions

What it is

A toolkit to fast-track development of **high performance computer vision** and **deep learning into vision applications**. It enables deep learning on hardware accelerators and easy **heterogeneous** execution across Intel[®] platforms. Components include:

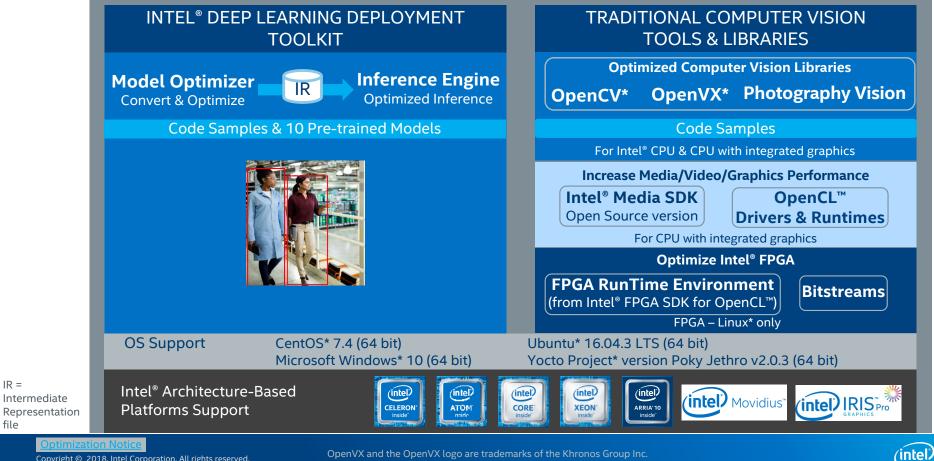
- Intel[®] Deep Learning Deployment Toolkit (model optimizer, inference engine)
- Optimized functions for OpenCV* and OpenVX*

Why important

Demand is growing for intelligent vision solutions. **Deep learning revenue** is estimated to grow from \$655M in 2016 to **\$35B by 2025**¹. This requires **developer tools** to integrate computer vision, deep learning, and analytics processing capabilities into applications, so they can help **turn data into insights that fuel artificial intelligence**.

https://software.intel.com/en-us/openvino-toolkit

Users: Software developers, data scientists working on vision solutions for surveillance, robotics, healthcare, office automation, autonomous vehicles, & more.


OpenVINO[™] version is 2018 R1

¹Tractica 2Q 2017

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Certain technical specifications and select processors/skus apply. See <u>product site</u> for details. OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc.

intel 72

What's Inside the OpenVINO[™] toolkit

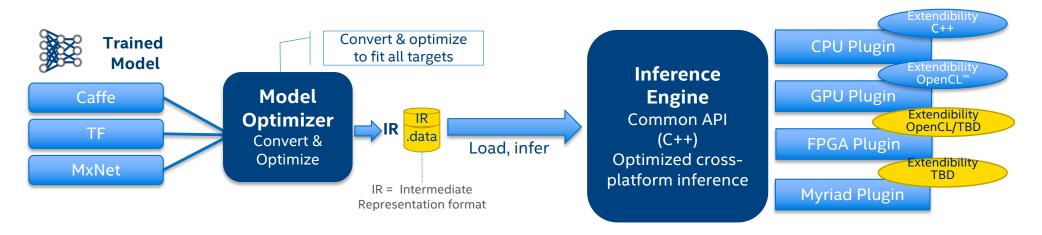
Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

IR =

file

Intermediate

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos


Intel[®] Deep Learning Deployment Toolkit Take Full Advantage of the Power of Intel[®] Architecture

Model Optimizer

- What it is: Preparation step -> imports trained models
- Why important: Optimizes for performance/space with conservative topology transformations; biggest boost is from conversion to data types matching hardware.

Inference Engine


- What it is: High-level inference API
- Why important: Interface is implemented as dynamically loaded plugins for each hardware type. Delivers best performance for each type without requiring users to implement and maintain multiple code pathways.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

(intel) 74

