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AGENDA

* Introduction

* Face Analysis & Emotion Recognition

* Deep Learning based Visual Recognition
* Visual Parsing & Multimodal Analysis
 Summary




VISUAL DATA EXPLOSION

24% CAGR
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Figures (n) refer to 2016, 2021 traffic shares.
Source: Cisco VNI Global IP Traffic Forecast, 2016-2021.

Source: Cisco white paper “The Zettabyte Era: Trends and Analysis”, June 2017.
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VISUAL UNDERSTANDING - WHAT IS IT?

Computer Vision (CV) is a field that includes methods for acquiring, processing,
analyzing and understanding images and, in general, high-dimensional data
from the real world in order to produce numerical or symbolic information

Imaging Visual Understanding Classification: Person, Camera
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Sample Capabilities

Face Detection & Recognition Emotion Recognition

Text Recognition in the wild Object Classification/Detection

Action Recognition Scene Classification/Understanding

Video Classification/Summarization ~ *** T Action: Taking picizures

Objective — Derive knowledge out of images/videos of the real world
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https://en.wikipedia.org/wiki/Computer_vision

DEEP LEARNING BREAKTHROUGHS FOR VISUAL RECOGNITION
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AlexNet FinerAlexNet VGG  GoogleNet ResNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC): 1000-catg Object Classification

“ConvNets are now the for almost all recognition and
detection tasks and approach human performance on some tasks."

LeCun, Bengio, Hinton, Deep Learning, Nature, May 2015
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VISUAL UNDERSTANDING & SYNTHESIS RESEARCH

Research innovation in smart visual data processing
technologies on Intel Platforms

Visual Understanding Image/Video Synthesis

-

Object Recognition/Detection
Action/Activity Recognition
Semantic Segmentation
Geometric Layout Estimation
High-level Scene Understanding
Visual-centric Multimodal
Understanding (Emotion, Visual

Content...)
* 3D Modeling & Reconstruction

» Geometry processing
* Animation & Rendering

Foundational Components
* CNN architectures, Visual Odometry, SLAM, Visual Indexing...

SW/HW Co-Design
(w/ BUs...)

Application/System Visual-based Decision-

SW API/Tools Prototyping Making/Control
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VISUAL UNDERSTANDING RESEARCH

Innovate in cutting-edge & technologies
for to enable novel usages and user experience

Face Analysis & Deep Learning based Visual Parsing &

Emotion Recognition Visual Recognition Multimodal Analysis
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AGENDA

* Face Analysis & Emotion Recognition




FAGE ANALYSIS TECHNOLOGY RESEARCH

Intel China Labs (ILC) developed a full Face Analysis pipeline with best
in class algorithms (20+ IPs)

Profile

Gender/Age/...
Recognition

Name

Face Recognition
Face Alignment

& Normalization

Expression

Face Detection Facial Landmark
/Tracking Detection/Tracking Facial Expression
Recognition




ILC FAGE ANALYSIS TECHNOLOGY EVOLUTION
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3D Modeling &
Enhancement

Gender/Age
Rec.

2011 2012 2013 2014 2015 2016 2017
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MAKE INTEL PLATFORMS GREAT WITH FACE ANALYSIS

NA
AN
Iris pro
Graphics

Female

Adult

@ REAL$ENSE ILC Leading Face

Intel® Computer Vision SDK Analysis Technology

e

INTEL Al DEVCON 2018



30 FAGE TECHNOLOGY

3D face : and for real-life
applications in VR/AR/Gaming...




REAL-TIME 3D FACIAL EFFECTS EXPERIENCE DEMO




30 FAGE TECHNOLOGY USE CASE

World 15t Intel Al MV
Powered by
ILC 3D Face Technology

Chris Lee

“Rainy Day, But We Are Together” ~ " "%




VISUAL EMOTION RECOGNITION

Smart world must be one with

AU-Aware Features and Interactions ( . ACM ICMI'15) with multi-task
learning to decode facial muscle movements & their inherent interactions

Angry v!Disgust Sad vs !urprise FDM (ECCV'14) 97.70
. DTAGN (ICCV'15) 96.94
AUAFI 98.70

CK+ dataset: 327 videos (neutral-onset-peak), 7 basic
facial expressions, 118 subjects with frontal pose only

m Overall recognition rate (%)

STM- ExpLet (CVPR'14) 75.12
DTAGN (ICCV'15) 66.33
AUAFI 80.27

MMI dataset: 205 videos (neutral-onset-peak-offset-
neutral), 6 basic facial expressions, 23 subjects with
large pose variations
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VISUAL-AUDIO SOLUTION FOR EMOTION RECOGNITION

Proposed “Importance-Aware Features” (IAF) with selective grouping
for audio solution and designed a framework to fuse visual & audio
solutions

|
Denoi '
. 1| benoise Calculate dense low-level [
Audio > and e |
g . statistical features
trimming I
|
R I
| — -~ :
I Chroma MFCC PLP Prosodic INTERSPEECH Emotion |l
Video I features features features features Challenge feature sets |/ .
—>data ______________________________________ 1 Emotion
Emotion scores and
: \ Feature | representation| gmotion label
—>| GF-Relationlets I (5 > " ont__“—
' learning model

Face Facial Face Illumination
—Image— . > feature —>frontali-— . > =I AUAFI I >
detection L . normalization J
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%,‘a —>| Conv. Features I >
=
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EMOTION RECOGNITION IN THE WILD CHALLENGE

(ACM ICMI 2015) in the audio-video based task, and
competitors included 74 teams (CMU, UIUC, MSR, etc.) across the world

Task 1: EmotiW 2015 AFEW dataset Examples of Emotiw2015 Video Clips

7 basic facial expressions completely
shown in movie clips

Task 2: EmotiW 2015 SFEW dataset
7 basic facial expressions completely
shown in static images

Overall Recognition Rate (%) on
Emotiw2015 Test Set

Baseline 39.33 39.13
Winner 2014 50.37 N/A
ILC solution ~ 53.80 5538
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HOLONET FOR ROBUST EMOTION RECOGNITION

Invented a deep yet computationally efficient CNN framework, HoloNet for
robust emotion recognition (EmotiW 2016 Most Influential paper)

o4 . | “... You showed me a really novel
: ! | Angry |
| | Disgust method, no use of extra data and
: E sl f Fear H H H
N BN BT — its speed is hundreds of times
| | Neutral faster than the other competitors.
! : Sad
iPhase-Convolution Block Phase-Residual Blocks Inception-Residual Blocki Surprise . . .
. N Abhinav, EmotiW 2016 Chair
3-channel input HoloNet Framework Output label |
Submission# | Validation (%) | Test (%) Method | (intel”) REALSENSE
1 4778 54,30 Fusion of HoloNet model A + 1 audio model ? I
2 48.83 55.14 Fusion of HoloNet model B + 1 audio model i @‘
3 50.13 56.83 1* Fusion of HoloNet model A&B + 1 audio model 9 't. j\\
4 50.91 55.14 2™ Fusion of HoloNet model A&B + 1 audio model “@\ :Q
5 51.96 57.84 Fusion of HoloNet model A&B + 1 audio model + 1 iDT model "

Total recognition accuracy of our 5 submissions to AFEW 6.0, both on the validation and the test sets.
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SSE: SUPERVISED SCORING ENSEMBLE

Invented SSE to enable discriminative learning within one single CNN for
accurate emotion recognition (EmotiW 2017 winner)

Supervised Scoring Ensemble (SSE)
Scoring

_ _ _ _ _ _ _ SupewisedBlocks -, Connection Layer Angy
r——= .
| — | Disgust
| : > I Fear than
I 1 | .
=7 bk HoloNet (single model)
I | ;_ I Neutral
o I
I - Sad .
= accuracy in
Emotiw 2017

" = ,f
S AU
3-Channel Input \__ ==

— Original Network

SSE Learning Framework

P.Hu, D. Cai, S. Wang, A. Yao, Y. Chen, “Learning Supervised Scoring Ensemble for Emotion Recognition in the Wild", ACM ICMI 2017.
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REAL-TIME MULTIMODAL EMOTION RECOGNITION PROTOTYPE

Emotion Scores (Visual Only)

Final Emotion Scores (Visual-Audio)
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Ang Dis Fea Hap Neu Sad Sur
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,4’ ! KE\/II.\I”C.E)RRIGAN | : / Emotion Scores (Audio Only)
LEW TEMPLE .\ 1
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Ang Dis Fea Hap Neu Sad Sur
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AGENDA

* Deep Learning based Visual Recognition




DEEP LEARNING CHALLENGES

600 25
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g 528 » 50
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£ 200 ’ A 2 230 9
@ / \ ’ 5
a 100 ’ \2 /7
0 127 ﬁ 0
AlexNet VGG-16 VGG-19 GoogleNet ResNet-152 DenseNet-161
Image Classification DNN Burden
Deployment: Most mainstream DNNs are both and

, difficult to deploy to embedded/edge devices
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OBJECT DETECTION ALGORITHM EVOLUTION

Region-based Associate the
Methods best of both

Region proposals to reduce se methodologies
space & region-wise subnetwo

detection

RCNN (CVPR’14), SPP (ECCV'14)
Fast/Faster RCNN (ICCV/NIPS'15)
HyperNet (CVPR'16)
R-FCN (NIPS'16

(CVPR17)
iethods
Single shot with FCNs

YOLO (CVPR'16)
SSD (ECCV'16)

ACCURACY

——
’_—- —~~
-

.7 Slldlng Wlndow + s

,' Handcrafted Features ‘.

‘\ Using different Aspect ratio/ ,
N Scale/ Stride/ Classifier /

Deep Learning (CNN) based Methods
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HYPERNET - AN EFFICIENT OBJECT DETECTION SOLUTION

A unified framework for region proposal selection and object detection (CvPR16)

= Shares Hyper Feature across different tasks Advantages:
Pre-trained CNN Model ° ngh reca”
- g " Convi Conv3 Conv5 ‘i Convn FC FC - T|me & space
e Xl | efficient
______ Discarded Layers

Coootng

Object Detection
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1

Network for Hyper Feature Extraction

Hyper Feature Maps Region Proposal Generation

Conv: Convolutional layer FC: Fully-Connected layer ROIl: Region of Interest bbox reg: bounding box regression

T.Kong, A. Yao, Y. Chen, F. Sun, “HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection”, CVPR 2016.
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RON: REVERSE CONNECTION WITH OBJECTNESS PRIOR NETWORKS

A fully convolutional framework
to solve two fundamental |
problems (CvPR'17) e il o

A ,
’ AL o l reverse é<connectioni '
. . : : < l — connection . -y:---o. :
* Multi-scale object localization & comecion ‘ 5 ’o@ 5 [ﬁ 3
with Reverse Connection \ - - e
Pyramids 3 - '

» Efficient negative space mining
with Objectness Prior Networks

Achieved SOTA accuracy & speed

fqgo

SSBujo8

T. Kong, A. Yao, F. Sun, M. Lu, H. Liu, Y. Chen, “RON: Reverse Connection with Objectness Prior Networks for Object Detection”, CVPR 2017.
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DSOD: LEARNING DEEPLY SUPERVISED OBJECT DETECTORS FROM SCRATCH

(ICCV'17)

* Not require ImageNet pre-training
 Even with limited (>=10K) bbox annotations

State-of-the-art Accuracy & Efficiency

« #parameter: 2 SSD, /2 R-FCN, 1/10 Faster-RCNN
« Better accuracy than SSD/YOLOv2 on VOC/MS-COCO
« ~20fps w/o tailored optimization on Intel NUC

Open many possibilities
« Training with limited data for specific problems
* Other domains: depth/medical/multi-spectral images

Dense Connection

Z.Shen, Z. Liu, J. Li, Y. Jiang, Y. Chen, X. Xue, “DSOD: Learning Deeply Supervised Object Detectors from Scratch”, ICCV 2017.
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MULTCLASS OBJECT DETECTION PROTOTYPE
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MODEL COMPRESSION: LOW-BIT DEEP COMPRESSION

A leading and elegant solution to achieve
compression on DNNs with and

DNS INQ MLQ
Dynamic Network Incremental Network Multi-Level

Surgery Quantl?atlon Quantization
(NIPS'16) (ICLR17) (AAAI'18)

oG)o m»Q"Q O
\" oY

plizing

Seek optimal DNN Constrain optimal DNN Constrain optimal DNN
architecture with low-bit weights with low-bit activations
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INQ: INCREMENTAL NETWORK QUANTIZATION

Three novel operations: parameter partition (well-defined metric), quantization
and re-training, making whole procedure progress in an incremental manner

Parameter partition Quantization (green) Re-training (blue)
P Advantages:
0.01|0.02]-0.20[0.04 ; 0.01]0.02|-0.20[0.04 0.11{0.04[-0.7 |0.19 First lOSSleSS netwo rk
o4 002}0.05) 11 ’ - o0sfoos quantization solution
oo | —— oolloodomor) Modelfrae
e y FP Multiplication

- Binary bit shift
Efficient training

A.Zhou, A. Yao, Y. Guo, L Xuand Y. Chen,
“Incremental Network Quantization:
Towards Lossless CNNs with Low-
precession Weights”, ICLR 2017.

INQ Illlustration
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INQ RESULTS

Achieved (actually 4 bit + 1 zero) for
popular DNNs, and obtained strongly comparable low-precision models against
the full-precision reference ResNet-18 model using 5/4/3-bit even 2-bit

5-bit results Different bit results
Network Bit-width  Top-1 error Top-5 error Model Bit-width ~ Top-1 error Top-5 error
AlexNet ref 32 42.776% 19.77% ResNet-18 ref 32 31.73% 11.31%
AlexNet 5 42.61% 19.54% INQ 5 31.02% 10.90%
VGG-16 ref 32 31.46% 11.35% INQ 4 31.11% 10.99%
VGG-16 5 29.18% 9.70% INQ 3 31.92% 11.64%
GoogleNet ref 32 31.11% 10.97% INQ 2 (ternary) 33.98% 12.87%
GoogleNet 5 30.98 % 10.72%
ResNet-18 ref 32 31.73% 11.31% Method Bit-width  Top-1 error  Top-5 error
ResNet-18 5 31.02% 10.90% BWN 1 39.20% 17.00%
ResNet-50 ref 32 26.78% 8.76% TWN 2 (ternary) 38.20% 15.80%

ResNet-50 5 25.19% 7.55% INQ (ours) 2 (ternary) 33.98% 12.87%
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LOW-BIT DEEP COMPRESSION RESULTS

Outperforms the state-of-the-art Deep Compression solution* with

on AlexNet, achieving with 2 bits
(Conv/FCQ) (Act) ratio error rate

P+Q * 8/5 32 0.00% /0.03%
P+Q+H * 8/5 32 35x 0.00% / 0.03%
Our method 4/4 4 71x 0.08% / 0.03%
P+Q+H * 4/2 32 - -1.99% [ -2.60%
Our method 3/3 4 89x -0.52% [/ -0.20%
Our method 2/2 4 142x -1.47% [ -0.96%

Comparison of our low-bit deep compression and deep compression method (P+Q+H, LCLR’16 and ISCA’16) on AlexNet.

Conv: Convolutional layer, FC: Fully connected layer, Act: Activation, P: Pruning, Q: Quantization, H: Huffman coding.
*S. Han, J. Pool, J. Tran, and W. Dally. Deep compression: Compressing deep neural networks with pruning, trained
quantization and huffman coding. Best paper in ICLR 2016.
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HWACCELERATION FOR DEEP LEARNING INFERENCE

Low-bit Deep Compression lays a solid foundation for
in fog/edge computing

INTEL FPGAS (I@ + Movidius %

ARRIA'10
inside”

Movidius
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AGENDA

* Visual Parsing & Multimodal Analysis




VISUAL PARSING & MULTIMODAL ANALYSIS

Advanced multimodal fusion & learning research to bridge the gap between
visual recognition and visual understanding

Video To Text (VTT)
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DENSE VIDEQ CAPTIONING

Invented a novel solution to produce informative & diverse dense captions
and outperform SOTA single video captioning methods

Video Ground-truth Descriptions:

1. 'a woman is taking a picture of children.'
2. 'aman involving three children.’

3. 'a group of people are looking at and taking

<:| pictures of a horse.'
4. 'a short clip showcasing a champion horse.'

5. 'a woman in a red blouse takes a picture.'
. . 6. 'kids are in playful mood.'
[ WaRan ‘l

Frames
IxWxH

Lexical labels

“gabine" 7. kids are posing for a picture and being
fet -H?_I.; interviewed.'

: 8. 'lady taking pictures of horse.'
"children" H

f
]
Anchor features :
]
I
]
]
1

RxCxXxY . . . Lexical Model Loss 0. 1h & describi .
@ @ @ (MIML Learning) . 'three man is describing a car.
[ Region-sequence generation J]: WTA based sentence-to-region-sequence association |+
Feature of selected regions @4___’@‘___’ @
IxCxXxY <pad> <pad> <pad> <pad> <pad>

Encoder [svfe==2]1sm ---...—".__LSTMI‘.—'.- LsTMr==2[1sTm
<pad> —>1= <pad>—>l= <pad> —b-ll {BOS)—»li
v A v

Decoder v+ ey | LSTM LST™ ST = e
Language Model Loss 1 l
(Bi-S2VT Learning) A woman is €055

Z.Shen, J.i,Z.Su, M. Li, Y. Chen, Y. Jiang, X. Xue, “Weakly Supervised Dense Video Captioning ", CVPR 2017.
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DENSE VIDEQ CAPTIONING

Invented a novel solution to produce informative & diverse dense captions
and outperform SOTA single video captioning methods

Region Sequences & DenseVidCap

.28

Kids are being interviewed

Z.Shen, J.i,Z.Su, M. Li, Y. Chen, Y. Jiang, X. Xue, “Weakly Supervised Dense Video Captioning ", CVPR 2017.
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DENSE VIDEQ CAPTIONING

Invented a novel solution to produce informative & diverse dense captions
and outperform SOTA single video captioning methods

a man in a suit is talking to another man in a suit

Z.Shen, J.i,Z.Su, M. Li, Y. Chen, Y. Jiang, X. Xue, “Weakly Supervised Dense Video Captioning ", CVPR 2017.
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DENSE VIDEQ CAPTIONING

Invented a novel solution to produce informative & diverse dense captions
and outperform SOTA single video captioning methods

Results on MSR-VTT Challenge

Team  |Memo | METEOR | BLEU-4 |ROUGEL| CIDEr _

Ruc-UVA RUC + UVA + ZJU 26.9 38.7 58.7 45.9
Videolab UCB + Austin +... 27.7 39.1 60.6 441
Aalto Aalto Univ. 26.9 39.8 59.8 45.7
V2t-navigator RUC + CMU 28.2 40.8 60.9 44.8

Ours ILC 28.3 41.4 61.1 48.9

Z.Shen, J.i,Z.Su, M. Li, Y. Chen, Y. Jiang, X. Xue, “Weakly Supervised Dense Video Captioning ", CVPR 2017.
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VIDEQ CAPTIONING DEMO

/A train is pulleg‘ivmto thelplatform? ;
- A»I_man in orange uniformiis walkingfon aplatfé_):rm'.

— \




VISUAL QUESTION ANSWERING

Question objective categories

 Apparent objective (through recognition results)

« Indiscernible objective (requires knowledge confirmation due to unclear target)
« Invisible objective (requires reasoning from external knowledge)

Q: What is the color of Q: What is in the oven?  Q: What kind of animal would love to eat these fruits?
A: Red A: Cookies A: Monkey

i ’ INTELAI DEVCON 2018



VKMN: VISUAL-KNOWLEDGE MEMORY NETWORKS

An end-to-end learning framework seamlessly incorporates
and into

* Input module: image/question

 Knowledge spotting module: retrieval case related knowledge

« Joint embedding module: joint visual and knowledge embedding

«  Memory module: receiving query, reading memory and predicting answers

.....................

e e i S ' o VKMN s
; | What is in the oven? £ 7 1 :
R T e e : :
attention Extract related E <s >t T 4
’ I
features knowledges | :
|
: <§,T>rt1M R E—> Ansiwer “Cookies”
) ' | Decoder
(meat, contain, bread) : |
S | <R T>rt1 S )
(bread, inside, oven) ! v '
(hotdog, come from, oven) : Key Value E
(meat, toasting, oven) y EnC(tder E"C?der /

% Joint embedding Bk i I

Z.Su, C. Zhu, Y. Dong, D. Cai, Y. Chen, J. Li, “Learning Visual Knowledge Memory Networks for Visual Question Answering”, to appear in CVPR 2018.
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VKMN RESULT ILLUSTRATIONS

Achieved SOTA results on VQA 1.0/2.0 benchmarks and better results on
guestions required knowledge reasoning/confirmation

Q: Who is wearing a red hat? Q: Which animal is reflected in the water? Q: What is in the oven?

MLB: Dog MLB: Dog MLB: Fruit

Ours: Man Ours: Duck Ours: Cookies

top-5 triple scores top-5 triple scores top-5 triple scores
<animal, cross, river> | <meat, bread, fish> |G
<guy, wear, helmet> NG
G/ <duck, cross, river> [NNRNGEG <oven, toasting, cookies> |GGG
<female, wear, helmet> I
<water, reflect, sunlight> |G <hotdog, from, oven> |G

<male, wear, helmet> |IEEEEEENEEE————

; ird, 2 , inside, —
<rider, wear, helmet>  EE <bird, face, water> |G <bread, inside, oven>
<she, wear, ponytail> [l <water, reflect, moutain> |l <meat, contain, bread> NG

0 0.05 0.1 0.15 0.2 0.25 0.3 0 01 02 03 04 05 0 0.05 0.1 0.15 0.2 0.25

Answers by our attention module MLB (ICLR'17) and VKMN (to appear in CVPR’'18) with top-5 triple score
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AGENDA

Summary




SUMMARY

Visual Understanding research innovation to address visual data
explosion challenges

Cutting-edge Deep Learning based VU research to impact Intel

architectures/platforms/solutions and help differentiate Intel
products

Call for more collaboration between universities and industry to
accelerate research innovation for making sense of visual data
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