Automated Feature Engineering
Xin Hunt

SAS Institute Inc

Automated Machine Learning Pipeline

Data Pre- E Model

Input ——> —> Qutput

processing Selection
Feature -—>

_ _ <«—— Auto-Tune
Engineering

Gsas

Motivation
“Garbage in, garbage out”

- Data Engineering is the process of cleaning, filtering, and organizing the data
for successful mining and modeling, by solving or avoiding problems in the
data.

- Could take 60-80% of the whole data mining effort.

- Feature Engineering methods allow us to choose the right representation to
train our models.

- Part of the Automation Initiative at SAS®: Automated Feature Engineering
- Envisioned for SAS® Visual Data Mining and Machine Learning

« Runs on SAS® Viya®: tested and optimized for Intel® Xeon® for performance and
scalability

Gsas

Traditional Feature Engineering

- Performed by data scientists
- Relies heavily on model selected and domain expertise
- Features are designed through trial and error

Input —> DEIE Pr.e— E— I\/Iodgl —> Qutput
Processing Selection
Hand-Pick —_— >

<«—— Auto-Tune
Features

Gsas

Automated Feature Engineering

- Performed by data scientists

- Assisted by automated feature generation, selection, and
composition methods

- Reduces manual trial and error time
- Expands search width and depth for best features
- Combined with automated model recommendation

Data Pre- : Automated Model

Input E Processing Recommendation Output
Automated Feature —
Generation and < Auto-Tune

Selection/Composition

Gsas

Problem Formulation
Feature Selection and Composition
« Original dataset X
- Model m

- Set of transformations T" = {¢;},7 = 1,2, ..., where each ¢;(-) outputs a
set of features

- Composition and concatenation of transformations
C(T7 X) — [til (ti2(' . (X))>7 tjl (tj2(' . (X>>)7 .]

« Objective: find a composition of transformations that maximize model
performance

C*, T = argmaxR (C(T, X))

- In reality, C' and T are optimized separately

Gsas

How To Build Good Features?
The two building blocks

« Feature generators
Domain specific feature generators

General purpose feature generators

- Feature selection and composition algorithm
The “best features” are both data and model specific

Need to combine with an efficient model selection and recommendation
method

Gsas

How To Find Good Features?
The two building blocks

- Feature generators
Domain specific feature generators
General purpose feature generators

« Feature selection and composition algorithm
The “best features” are both data and model specific

Need to combine with an efficient model selection and recommendation
method

Gsas

Feature Extraction and Generation
Domain Specific Features
- Text Data

« Bag of words, semantic structural representation, latent semantic
representations (latent Dirichlet allocation), Word2Vec embeddings

« Image Data
« Color, texture, shape (edges, corners, blobs), wavelet coefficients, Scale-

invariant features (SIFT), bag-of-features + spatial pyramid, deep learning based
features

« Time series

 Spectral features, motifs, shapelets, discords, pattern dictionaries

Osas

Feature Extraction and Generation
General Purpose Features

- Single-variable transformations

- log, exponential, frequency count, one-hot coding, normalization
- Two-variable combinations

- sum, difference, division, product
- Multivariate and model-based methods

« Unsupervised feature generation

- PCA, random projections, meta data learning, distance/cluster based features, relational feature
generation, kernel manifold learning

« Supervised feature generation
- Linear discriminant analysis (LDA), supervised dictionary learning

« Deep learning based methods

- auto-encoders, mid layers of trained deep neural networks

Osas

How To Find Good Features?
The two building blocks

« Feature generators
Domain specific feature generators

General purpose feature generators

- Feature selection and composition algorithm
The “best features” are both data and model specific

Need to combine with an efficient model selection and recommendation
method

Gsas

Feature Selection and Composition
Pure Selection

Examples: DSM [Kanter et al. 2015], OneBM [Lam et al. 2017]

Select using statistics

- Filter by variance, correlation, mutual information

Select by model

 Build models that encourage sparsity (e.g., L1 penalization)
- Select by filtering out features with low weights

Grid Search

« Build model with random subsets of features
« Compare and choose the subset with best performance

Osas

Feature Selection and Composition
Pure Selection

- Examples: DSM [Kanter et al. 2015], OneBM [Lam et al. 2017]

 Limitations:
« Does not allow feature composition

- Statistics and sparse model weights do not directly translate to performance
when used to train the actual model

« Grid search is computationally expensive, especially when the number of
possible transformations is large

Gsas

Feature Selection and Composition
lterative Combination

- Example: ExploreKit [Katz et al., 2016]

- Greedy search for best feature combination
- Initialize with empty feature set Cy(T, X) =0

- At each iteration:

« Find candidate feature with the highest performance improvement
in = argmax R, ([Cr—1(T, X),t;(X)])

- Add best candidate to the feature set
Cpn(T,X) =[Cr-1(T, X),t; (X)]
-« Repeat until convergence (low improvement) or time budget is reached

Gsas

Feature Selection and Composition
lterative Combination

Example: ExploreKit [Katz et al., 2016]

A greedy selection algorithm
More scalable than grid search

Limitations:
« Does not allow feature composition
« Greedy, which may result in sub-optimal feature selection

- Time consuming. Iterative algorithm is difficult to parallelize

Gsas

Feature Selection and Composition
Hierarchical Search

Example: Cognito [Khurana et al. 2016]

Use a tree-like structure (transformation

graph) to represent possible feature

compositions quare \ Fs,

(0s)
log
Start with one node (original data) (%)
At each iteration i

- Evaluate possible child nodes based on criteria -~ D4,9=Dg#Dg |- 3o ;,J' -----
like node accuracy and depth D5 5 =Dg+Dg

- Add best child node to current structure

Repeat until time budget is reached

Gsas

Feature Selection and Composition
Hierarchical Search

Example: Cognito [Khurana et al. 2016]

Allow feature composition

Can generate different feature combinations (5, (5)
by changing criteria) Ve o square
ONEN:
Limitations: g
« Greedy algorithm may lead to sub-optimal | ! p
. «o-#|Dyg=Dy+Dg |€-- e ________ A -
solution : 2 %
« Time consuming (iterative training and @
validation)

« Criteria setup is not intuitive

Gsas

Feature Selection and Composition
Hierarchical Search

« [Khurana et al. 2017]

Extension: reinforcement learning based

search @ @

- State: a transformation graph and remaining square S g

budget value by
. ® © X @ ®'®

« Possible actions: Add any feasible child node to

current state '
__' D49—D4+D9 ————— ————————— / _____

« Objective: learn optimal action policy given state \I:’
D5’3=D5+D3

Policy learned on multiple training datasets

Gsas

Feature Selection and Composition
Hierarchical Search

[Khurana et al. 2017]

Extension: reinforcement learning based

search a (0s)
sum square \-‘F31 0
Balance exploitation with exploration O Co

More efficient search with well-trained policy !

. .. . RN D4,9 =D4+Dg 4—::‘—»\-\ ________ /_/’ ----- -
Policy training requires extra data, and can E»
take a long time 7537050

Gsas

RULLS

Unsupervised Feature Generation

Namita Lokare Jorge Silva llknur Kabul

Gsas

RULLS

Feature Engineering Method

- |dea: Aggregating features from a random union of subspaces by
describing points using globally chosen landmarks. Euclidean distances
are encoded as features in the final feature matrix.

- Features generated are:
« Sparse
« Non-negative
« Rotation invariant
« Allow fast training when used in conjunction with simple models
« Can be used for clustering tasks

« Can be used for classification

Gsas

RULLS

Union of Subspaces

- Assumptions:

« Globally the data may not be low-
dimensional

Local clusters of data live in
low—dimensional subspaces

« Locally data exhibit low-dimensional
structure (subspaces)

Outlier
°

- Advantages:

« Reduces local dimensionality without
forcing global dimension reduction

« Preserves local structure

Gsas

(a)

Workings of RULLS

Pipeline

Data points

(b)

Randomly select landmarks
Construct local subspaces
with landmarks’ neighbors

Project onto the subspace
of each landmark, measure
distances to the landmark

Feature columns

(c)

— Distance
values

(Frot,)

Use regularized
distances as features

Osas

Workings of RULLS
Algorithm

Algorithm 1 RULLS

NS D LR

%

10:
11:
12:
13:

14:
15:
16:
17:

: Input: Dataset X € R"™*™m
: fort=1toTdo
Choose landmarks I, randomly from X
for each landmark I, do
Consider an e— ball around I,
Choose k. neighbors of I, from this neighborhood
Find local subspace distances using algorithm 2 and re-
turn D,
Aggregate Dy, to D
end for
Use D to find ;. nearest landmarks to each data point in X
for each data point x; in X do
for each nearest landmark j € (I1,--- ,[;) do
Set F{xi,l;} = max(Mean(Dx,) — D(x;,l;), regp -
Mean(Dx,))
end for
end for
end for
Return concatenated features F

Algorithm 2 Local Subspace Distances

1:

Input: Dataset X € R™™_ Neighborhood X, € RKeX™ and
landmark I,
if flag = 1 then
Normalize X, with respect to the neighborhood
Normalize X with respect to the neighborhood’s subspace
end if
Compute the eigenvalues and eigenvector of the covariance
matrix of this neighborhood
Compute the dimensions that explain 95% of the variance of
the data
Project X to this subspace and compute distances to the land-
mark I, to create D, € R™
Return D,

Osas

Variants of RULLS

« Variant |
- Random projections (no subspace learning)

« Variant Il
- Use Euclidean distance (no projection)

« Use Robust PCA in presence of noise and outliers

Gsas

Existing Methods

- RandLocal
- Features are chosen randomly
- Use only one global neighbor to encode distances
- Suggested range for T is between 100 and 500

*Suhang Wang, Charu Aggarwal, and Huan Liu. 2017. Randomized Feature Engineering As a Fast and Accurate Alternative to
Kernel Methods. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’17). ACM, New York, NY, USA, 485-494. https://doi.org/10.1145/3097983.3098001

Gsas

Advantages of RULLS

- RULLS selects features that are locally relevant unlike RandLocal, Variant |,
and Variant Il

« RULLS can achieve a better performance than all the methods with fewer
iterations

- Simple machine learning models when used in conjunction with the
features generated by RULLS are fast and efficient to train

« RULLS allows for the use of robust PCA in presence of noise and outliers

Gsas

Datasets Tested

apanese Fashion Breast .. Anuran
Dataset J \I/:')owel MNIST Baseball Cancer Digits IRIS Calls
Instances 9,960 70,000 1,340 569 10,992 150 7195
#Features 15 784 18 32 16 4 22
#Classes 9 10 3 2 10 3 4
Missing - - 20 - - - -

Gsas

Results

Classification Tasks

apanese Fashion Breast ..
Method J\E')owel MNIST Cancer Baseball Digits
Raw Features 89.18 78.06 88.72 89.45 90.25
RandLocal 89.29 76.43 91.92 92.16 95.38
Variant I 92.92 83.19 92.79 92.09 97.00
Variant II 92.76 82.96 92.70 92.53 97.17
RULLS (PCA) 98.02 85.54 92.80 92.73 97.66

Classification accuracy on datasets. Highlighted text shows the method
with the best performance.

Gsas

Classification Accuracy

Classification Accuracy

Classification Accuracy

504

40
0

50
Iterations (T)

(a)

50
Iterations (T)

(b)

50
Iterations (T)

(d)

100

100

Classification Accuracy

Classification Accuracy

- --Raw Features
——RandLocal
Variant |l
——Variant |
——RULLS

100

50
Iterations (T)

(c)

100

Iterations (T)

(e)

100

Figure 3: Average classification accuracy
(%) with varying iterations (t = 1, 10, 50,
and 100) for raw features, RandLocal,
Variant |, Variant Il and RULLS (PCA).

(a) Japanese Vowel, (b) Fashion MNIST,
(c) Breast Cancer Wisconsin, (d)
Baseball and (e) Digits dataset.
Methods compared here beat the raw
features score in just a few iterations.
RULLS performs better than other
methods on all datasets compared.

Gsas

Results
Classification Tasks in presence of noise

Classification performance in presence of 10% noise added to columns and rows in each dataset. Best
performance is highlighted in blue. The numbers in the parenthesis indicate the difference between the
performance with and without noise.

Add noise to columns Add noise to rows
(10%) (10%)
Method apanese Fashion Breast Japanese Fashion Breast
J\.!’)owel MNIST Cancer Basebal . \I’)owel MNIST Cancer Baseball
Raw Features | 87.90 (1.28) 77.79 (0.27) 80.57 (8.15) 90.30 (0.85) | 67.53 (21.65) 79.06 (1.00) 84.36 (4.36) 88.81 (0.64)
RandLocal | 84.91(4.38) 74.65(1.78) 86.78 (5.14) 91.76 (0.40) | 81.87 (7.42) 76.46 (0.03) 90.70 (1.22) 91.41 (0.75)
Variant I 91.16 (1.76) 82.04 (1.15) 88.96 (3.83) 91.34(0.75) | 85.04 (7.88) 82.74 (0.45) 91.39(1.40) 91.56 (0.53)
Variant II | 91.28 (1.48) 81.85(1.11) 89.64 (3.06) 91.27 (1.26) | 84.80 (7.96) 82.82(0.14) 92.45(0.25) 91.33 (1.20)
RULLS (PCA) | 91.76 (6.26) 84.06(1.48) 88.07 (4.73) 91.79(0.94) | 89.61 (8.41) 85.55(0.01) 90.17 (2.63) 91.86 (0.87)

RULLS with ROBPCA on the Breast Cancer dataset in the case of raw features and 10% noise added to columns
and rows.

Columns Rows
B tC
reast Cancer Raw features (10%) (10%)
RULLS
(ROBPCA) 92.28 8649 9333

Gsas

Clustering performance on datasets. We report Normalized Mutual Information (NMI). Highlighted text
shows the method with the best performance per dataset.

Comparison of RULLS with PCA and ROBPCA on IRIS dataset. We see an improvement in performance

with ROBPCA

Clustering Tasks

Results

Method Anuran Calls IRIS Baseball
Raw Features 0.4215 0.7582 0.1638
RandLocal 0.4028 0.6523 0.1532
Variant | 0.4333 0.7980 0.1745
Variant II 0.4413 0.8057 0.1907
RULLS (PCA) 0.4472 0.7612 0.1924

RIS dataset

RULLS (PCA)

RULLS (ROBPCA)

NMI

0.7612

0.7981

Gsas

1000

2000

3000

4000

Visual Comparison of features

SR =0.0081 SR =0.0819 SR =0.0819 SR =0.0819

5000 I
1000 [l il I 7000 1000 || l| . | | 4500]
; 2000 | | ||| | o0 2000 || ” | H 4000 o]
3000 | | | | ' | h 3000 I | | l | I | | ' - 3500 i
I R | ' e 4000 | | | | 1 3000 N
i Ll - 000 L 4000 00 +

N - AN N - :

00 7000 RN Il o ‘ 7000 4
I | | H 2000 —
8000 || | | 8000 | 6 |
02 | | | 1000 L
9000 | | o000 [8 |

20 40 60 80 100 120 ° 20 4 60 80 100 120 ° 20 40 60 80 100 120 ’ 20 4 60 80 100 120
(a) (b) (c) (d) (e)

Visual interpretation of Japanese Vowel dataset features. (a) RandLocal, (b) Variant I, (c) Variant
I, (d) RULLS (PCA), (e) ground truth class labels. The features are generated for T =1, /,= 122,
¢1= 10 for RULLS (PCA), Variant I, and Variant Il, and ¢; = 1 for RandLocal.

Gsas

References

Dong, Guozhu, and Huan Liu. "Feature Engineering for Machine Learning and Data Analytics." (2018).

Katz, Gilad, Eui Chul Richard Shin, and Dawn Song. "Explorekit: Automatic feature generation and selection." In Data Mining

(ICDM), 2016 IEEE 16th International Conference on, pp. 979-984. IEEE, 2016.

Khurana, Udayan, Horst Samulowitz, and Deepak Turaga. "Feature Engineering for Predictive Modeling using Reinforcement

Learning." arXiv preprint arXiv:1709.07150 (2017).

Han Xiao, Kashif Rasul, and Roland Volléraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine
Learning Algorithms. (2017). arXiv:cs.LG/cs.LG/1708.07747

Lu, Yue M., and Minh N. Do. "A theorX for sampling signals from a union of subspaces." IEEE transactions on signal
processing 56, no. 6 (2008): 2334-2345.

UCI Machine Learning Repository. 2013. http://archive.ics.uci.edu/ml

Wang, Suhang, Charu Aggarwal, and Huan Liu. "Randomized Feature Engineering as a Fast and Accurate Alternative to
Kernél Methods." In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 485-494. ACM, 2017.

Namita lokare, Jorge Silva, and llknur Kaynar Kabul. "RULLS: Randomized Union of Locally Linear Subspaces for Feature
Engineering." arXiv preprint arXiv:1804.09770 (2018).Feature Engineering for Machine Learning and Data Analytics

Khurana, Udayran, Fatemeh Nargesian Horst Samulowitz, Elias Khalil, and Deepak Turaga. "Automating Feature
"Transformation 10, no. 10 (2016): 10.

Engineering.

Hamaad Shah. “Automatic feature engineering using deep learning and Bayesian inference.” https:// o
towardsdatascience.com/automatic-feature-engineering-using-deep-learning-and-bayesian-inference-application-to-
computer-7b2bb8dc735

Gsas

Union of Subspaces

Gsas

Union of Subspaces

Gsas

Union of Subspaces
Example: Image Analysis

Tree trunks

Green leaves
and branches ggyws —

Road

Gsas

