

Fast-Track Machine Learning Operationalization Through Streaming Integration

May 2018

XXXXXX

Speakers and Agenda

Changsha Ma

Codin Pora

Steve Wilkes

- Background
- Introduction To Striim
- Lab : Network Intrusion
 Detection System
 Q&A

Operational Machine Learning Facts

The value of ML is based on the realtime handling of high data volume, velocity, and variety at scale

Intensive real-time pre-processing and feature extraction is required before feeding raw data into models

Static models cannot fit dynamic data in operational systems even they are fine-tuned offline

Operational systems demand continuous insights from model serving and minimal human intervention

Striim Solution of Fast-Track ML Operationalization

- Filter, enrich and otherwise prepare streaming data
- Land data continuously, in an appropriate format for training a machine learning model
- Handle model lifecycles, enabling retraining if the model no longer fits the data
- Integrate a trained model into the real-time data stream to make continuous predictions
- Visualize the real-time data and associated predictions, and alert on issues

Data Arrives in Streams - Not in Batches

© 2018 Striim, Inc. All rights

Striim Is Built For Streaming Integration

Handling extreme volumes of data at scale with high throughput

Processing, analyzing, and correlating data in flight

Making data valuable, verifiable, and visible in real time

Why Are Companies Using Streaming Integration?

& kafka	Data Distribution and Consistency	 Kafka Integration and Processing RDMS Integration Data Grid Cache Consistency
	Cloud Adoption	 Zero Downtime Migration to Cloud Continuous Real-Time Data Integration
	Integration for Analytics	 Hadoop Integration Operational DS/DW Integration Offloading Reporting
	Real-Time Analytics	 Next-Generation Analytics Real-Time Alerts Data Visualization
•))	Internet of Things	 IoT Edge Processing and Analytics

Moving to a "streaming first" data architecture, supporting cloud, streaming analytics, and IoT.

Bridge the old and new worlds of data.

Streaming Integration is the foundation for data modernization initiatives.

Striim Platform for Streaming Integration with Intelligence

© 2018 Striim, Inc. All rights

Streaming Integration with Intelligence

© 2018 Striim, Inc. All rights

Integration and Analytics Through Data Flows

\$ ≡	Flow				⊙ Help Ω Admin
0 Flow: De	clinedTransactions	>		Created ~	🗈 🐥 🖀 📴 🚳 Ketadata Browser
Q. Search	F	TM.FinancialTransactionMonitor			DeclineRateCQ
Sources	Auro		ReadTransactionH		QUERY ************************************
IO Binary	CollectD		DeclineRateCQ List all Relats in DeclineRa.	L. TAViolumeCQ side in: Declined T	<pre>(T0_FLOAT(DeclinedTxWolume)/T0_FLOAT(TotalTxVolume))*100 END AS DeclineRate, SUU(CASE WHEN LocalResponseCode = '01' THEN 1 ELSE 0 END) AS ApprovedTxVolume, CASE WHEN ApprovedTxVolume=0 THEN 0</pre>
Database	() Delim- Separated		DeclineRateCheckWindow	etestoreCQ CD DeclinedTxVolumeWAS	WHEN TotalTxVolume=0 THEN 0 ELSE (TO_FLOAT(ApprovedTvOume)/TO_FLOAT(TotalTxVolume))*100 END AS ApprovalRate FROM DataAggregationWindow
E) File	TEXT Free Form Text		6 Evente Eliding	vida in DecEineRa	1. Press Ctrl-space for a pop-up menu of functions and cache, stream, and WActionStore 🗙 names
GG GoldenGate	HDFS		DeclineRateChangeCQ Usz wil fields in DeclineRa.	ateStoreWAS	New Output Existing Output
HP Non Stop CDC	HP NonStep SQLMP		Recting Batter Chards CD		DeclineRateStream × ~
HP NonStop SOLMX	HTTP		DeclineRateCheckQQ List all fields in DeclineRa		
Enrichment Processing	>				
Targets Base Compone	ents >		DeclineRateMertCQ List all fields in Declinesha	Message Log. 🐱	Cancel Save

Visualization Through Streaming Dashboards

Striim – Integration Overview

Enterprise Grade

Clustered, Distributed, Scalable, Reliable and Secure

Striim Application

Tungsten console

CREATE APPLICATION MultiLogApp; CREATE FLOW MonitorLogs; CREATE SOURCE AccessLogSource USING... CREATE TYPE AccessLogEntry ... CREATE STREAM AccessStream OF... CREATE CQ ParseAccessLog ... W >

Application

F # 1 . .

Core Striim Components

Lab: Network Intrusion Detection System (NIDS)

Start Striim server in virtual machine striimAIDC

Navigate to Striim Web UI in your host/VM browser

Note: if the URL is not accessible from you host browser, go to Applications -> Sundry -> Firewall -> Options -> Change default zone to trusted.

Network Intrusion Detection System (NIDS)

• Data:

- Network flows with robust features from tcpdump analyzer
- Tasks:
 - Detect abnormal flows with low false positive rate
 - Automatically adapt model serving to data evolution
 - Continuously monitor system and alert on issues in real time
- Algorithms
 - One-Class SVM (Weka LibSVM)
 - Time series spike detection

NIDS Data

Name	Туре	Description
srcip	nominal	Source IP address
sport	integer	Source port number
dstip	nominal	Destination IP address
dsport	integer	Destination port number
proto	nominal	Transaction protocol
state	nominal	Indicates to the state and its dependent protocol
dur	Float	Record total duration
sbytes	Integer	Source to destination transaction bytes
dbytes	Integer	Destination to source transaction bytes
sttl	Integer	Source to destination time to live value
dttl	Integer	Destination to source time to live value
sloss	Integer	Source packets retransmitted or dropped
dloss	Integer	Destination packets retransmitted or dropped
service	nominal	http, ftp, smtp, ssh, dns, ftp-data ,irc
Sload	Float	Source bits per second
Dload	Float	Destination bits per second
Spkts	integer	Source to destination packet count
Dpkts	integer	Destination to source packet count
swin	integer	Source TCP window advertisement value
dwin	integer	Destination TCP window advertisement value
stcpb	integer	Source TCP base sequence number
dtcpb	integer	Destination TCP base sequence number
smeansz	integer	Mean of the packet size transmitted by the src
dmeansz	integer	Mean of the packet size transmitted by the dst
trans_depth	integer	Represents the pipelined depth into the connection
Sjit	Float	Source jitter (mSec)

Name	Туре	Description
Djit	Float	Destination jitter (mSec)
		Actual uncompressed content size of the data transferred from the server's
res_bdy_len	integer	http service.
Sintpkt	Float	Source interpacket arrival time (mSec)
Dintpkt	Float	Destination interpacket arrival time (mSec)
tcprtt	Float	TCP connection setup round-trip time, the sum of 'synack' and 'ackdat'.
synack	Float	TCP connection setup time, the time between SYN and SYN_ACK.
ackdat	Float	TCP connection setup time, the time between SYN_ACK and ACK.
		If source and destination IP addresses equal and port numbers equal then,
is_sm_ips_ports	Binary	this variable takes value 1 else 0
		No. for each state according to specific range of values for
ct_state_ttl	Integer	source/destination time to live.
ct_flw_http_mthd	Integer	No. of flows that has methods such as Get and Post in http service.
is_ftp_login	Binary	If the ftp session is accessed by user and password then 1 else 0.
ct_ftp_cmd	integer	No of flows that has a command in ftp session.
		No. of connections that contain the same service and source address in 100
ct_srv_src	integer	connections according to the last time.
		No. of connections that contain the same service and destination address in
ct_srv_dst	integer	100 connections according to the last time.
ct_dst_ltm	integer	No. of connections of the same destination address in 100 connections.
ct_src_ ltm	integer	No. of connections of the same source address in 100 connections.
		No. of connections of the same source address and destination port in 100
ct_src_dport_ltm	integer	connections.
		No. of connections of the same destination address and the source port in
ct_dst_sport_ltm	integer	
		No. of connections of the same source and destination address in in 100
ct_dst_src_ltm	lintogor	connections.

Deploy anomalyDetection application, and view Flow

711.

- Ingest data
- Filter data fields
- Preprocess raw data
- Aggregate events
- Extract features
- Detect anomalies
- Persist results

Here .

• Filter data fields

SELECT "NIDS", TO DATE(TO LONG(data[0])*1000), TO_STRING(data[1]), TO_STRING(data[2]), TO_Double(data[3]),TO_STRING(data[4]),TO_STRING(data[5]), TO STRING(data[6]), TO Double(data[7]), TO Double(data[8]), TO_Double(data[9]),TO_Double(data[10]),TO_Double(data[11]), TO_Double(data[12]),TO_Double(data[13]),TO_Double(data[14]), TO_Double(data[15]),TO_Double(data[16]),TO_Double(data[17]), TO_Double(data[18]),TO_Double(data[19]),TO_Double(data[20]), TO Double(data[21]), TO Double(data[22]), TO Double(data[23]), TO Double(data[24]), TO Double(data[25]), TO Double(data[26]), TO_Double(data[27]),TO_Double(data[28]),TO_Double(data[29]), TO_Double(data[30]),TO_Double(data[31]),TO_Double(data[32]), TO_Double(data[33]),TO_Double(data[34]),TO_Double(data[35]), TO Double(data[36]), TO Double(data[37]), TO Double(data[38]), TO_Double(data[39]),TO_Double(data[40]),TO_Double(data[41]), TO_Double(data[42]),TO_Double(data[43]),TO_Double(data[44]) FROM dataStream c WHERE PAUSE(15000L, c)

- Preprocess raw data
 - Enrich stream with standardization
 - preprocessPara_Cache

Туре	⁸ ≣ preprocessType		~	HIDE			
Key Field		Туре					
م m_ct_src_ltm		Double	~				
ه m_ct_srv_dst		Double	~				
م m_is_sm_ips_	m_is_sm_ips_ports		~				
م s_dur	s_dur		~				
QUERY PROPERTIES							
Lookup Key 🛈	name			~			

Preprocess raw data

tcpdumpProcess

QUERY

select

s.name, s.datetime, s.src,s.dst, (s.dur-p.m_dur)/p.s_dur, s.proto, s.service, s.state, (s.spkts-p.m_spkts)/p.s_spkts, (s.dpkts-p.m_dpkts)/p.s_dpkts, (s.sbytes-p.m_dbytes)/p.s_dbytes, (s.dbytes-p.m_dbytes)/p.s_dbytes, (s.rate-p.m_rate)/p.s_rate, (s.sttl-p.m_sttl)/p.s_sttl, (s.dttl-p.m_dttl)/p.s_sttl, (s.dload-p.m_dload)/p.s_dload, (s.sloss-p.m_sloss)/p.s_sloss, (s.dloss-p.m_dloss)/p.s_dloss, (s.sinpkt-p.m_sinpkt)/p.s_sinpkt,

Ουτρυτ το

Existing Output

tcpdumpProcessStream

10000

- Aggregate events
 - 10 seconds as observation interval
 - Two adjacent points in time series have 10-second time difference

Extract features

select last(datetime) as datetime, last(name) as name, count(datetime) as total, list(src) as src, list(dst) as dst, list(dur) as f1, list(proto) as f2, list(service) as f3, list(state) as f4, list(spkts) as f5, list(dpkts) as f6, list(sbytes) as f7, list(dbytes) as f8, list(rate) as f9, list(sttl) as f10, list(dttl) as f11, list(sload) as f12, list(dload) as f13, list(sloss) as f14, list(dloss) as f15, list(sinpkt) as f16, list(dinpkt) as f17, list(sjit) as f18, list(djit) as f19, list(swin) as f20, list(stcpb) as f21, list(dtcpb) as f22, list(dwin) as f23, list(tcprtt) as f24, list(synack) as f25, list(ackdat) as f26, list(smean) as f27, list(dmean) as f28, list(trans_depth) as f29, list(response_body_len) as f30, list(ct_srv_src) as f31, list(ct_state_ttl) as f32, list(ct_dst_ltm) as f33, list(ct_src_dport) as f34, list(ct_dst_sport) as f35, list(ct_dst_src_ltm) as f36, list(is_ftp_login) as f37, list(ct_ftp_cmd) as f38, list(ct_flw_http_mthd) as f39, list(ct_src_ltm) as f40, list(ct_srv_dst) as f41, list(is_sm_ips_ports) as f42 from tenSecBatch

- Detect anomalies
 - One-class SVM

select datetime, name, total, AIDCSVMscore(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31, f32, f33, f34, f35, f36, f37, f38, f39, f40, f41, f42, '/home/admin/Striim/IntelAICon/appData/arffHeader.txt', '/home/admin/Striim/IntelAICon/appData/testData.arff', '/home/admin/Striim/IntelAICon/idsOneClass.model') as anomalySum, anomalySum.size() as anomalyNum, anomalyExtract(anomalySum, src) as anomalySrc, anomalyExtract(anomalySum, dst) as anomalyDst from NIDSfeatureStream;

Persist results

test1				
Input Stream	\approx alertStream \checkmark			
Туре	alertStream_Type VIEW			
ADAPTER ()	FileWriter ~			
File Name	alertSummary.csv			
Show optional properties				
FORMATTER ①	DSVFormatter ~			

++++

Flows

1. Run application to see streaming processing results at each step (Click one stream and then click *Preview on Run*).

2. Go to /home/admin/Striim to see the persisted results in alertSummary.csv

3. **Stop** and **undeploy** the application

© 2018 Striim, Inc. All rights

Deploy anomalyDetection and then deploy retrain View Flow of retrain

Apps @				
 anomaly 	yDetection	retrain		🚠 Manage Flow
1 Source, 0 WActionStores		0 Sources, 0 WActionStores		📥 Monitor App
0 msg/s	0 WActions	0 msg/s 0 WActions	:	🗟 Export TQL
IntelAIDC		IntelAIDC		▶ Start
				🕤 Undeploy

No. of anomalies increases due to data evolution

- Difference time series
- Aggregate recent time events and prepare algorithm input
- Detect time series peaks

- Aggregate recent time events
 - Constrain peak detection on

thirtyAlertDiffEvent		peakAlertDetectPrepare			
Mode 🛈	Sliding	QUERY	R		
Partition by		<pre>SELECT last(datetime) as datetime, name, list(anomalyDiff) as anomalyNum FROM thirtyAlertDiffEvent having count(*) = 31</pre>			
INPUT FROM					
Input Stream ①	\approx alertDiffStream \lor	peakAlertDetectPrepare1			
Туре	alertDiffStream_Type VIEW	QUERY	7		
SIZE OF WINDOW	V O	<pre>SELECT last(datetime) as datetime, name, list(0.0) as anomalyNu FROM thirtyAlertDiffEvent having count(*) < 31</pre>	m		
○ Time					
O Count					
Events	31				

7

K

- Detect time series peaks
 - Calculate z-score of the 31th event in the sliding window

QUERY SELECT datetime as datetime, name as name, peakDetect(anomalyNum,

5) as anomalyPeak

FROM peakAlertDetectStream

NIDS Task 2 (2): Retrain Model

- Aggregate new training data
- Aggregate peak signals
- Join two parallel flows
- Cancel/trigger retraining

NIDS Task 2 (2): Retrain Model

	ggre	gate r	new	tra	inin	g		
ß	fiveMinB	atch						
Mode	(i)	Jumping		~				
Partiti	ion by							
INPU	T FROM							
Inpu	it Stream 🛈	[≈] tcpdumpProce	\approx tcpdumpProcessStream \lor					
Туре	5	tcpdumpType VIE	w					
SIZE	OF WINDOW	1 0						
•	Time							
Tin	ne	5	MINUTE	~				
		Event Time		~				

© 2018 Striim, Inc. All rights

• Aggregate peak signals

fiveMinBatch2						
Mode (j	Jumping ~					
Partition by						
INPUT FROM						
Input Stream 🛈	[≈] peakAlertStream ∨					
Туре	peakAlertStream_Type VIEW					
SIZE OF WINDOW ①						
O Time						
Time	5	MINUTE ~				
	Event Time	~				

© 2018 Striim, Inc. All rights

- Join two parallel flows
 - Features from NIDStrainPrepare
 - Data change signal from *NIDStrainPrepare1*
 - Insert into the same stream

Cancel/trigger retraining

 CREATE JUMPING WINDOW matchWin OVER NIDStrainDataStream KEEP 2 rows WITHIN 30 second;

Advanced		
Time		SECOND ~
Events	2	×
Timeout	30	SECOND ~

- Cancel/trigger retraining
 - Select fields from upstreams

SELECT first(name) as name, first(datetime) as ts1, last(datetime) as ts2, first(total) as total1, last(total) as total2, first(triggerFlag) as flag1, last(triggerFlag) as flag2, first(f1) as f1, first(f2) as f2, first(f3) as f3, first(f4) as f4, first(f5) as f5, first(f6) as f6, first(f7) as f7, first(f8) as f8, first(f9) as f9, first(f10) as f10, first(f11) as f11, first(f12) as f12, first(f13) as f13, first(f14) as f14, first(f15) as f15, first(f16) as f16, first(f17) as f17, first(f18) as f18, first(f19) as f19, first(f20) as f20, first(f21) as f21, first(f22) as f22, first(f23) as f23, first(f24) as f24, first(f25) as f25, first(f26) as f26, first(f27) as f27, first(f28) as f28, first(f29) as f29, first(f30) as f30, first(f31) as f31, first(f32) as f32, first(f33) as f33, first(f34) as f34, first(f35) as f35, first(f36) as f36, first(f37) as f37, first(f38) as f38, first(f39) as f39, first(f40) as f40, first(f41) as f41, first(f42) as f42 from matchWin having count(*) = 2

- Cancel/trigger retraining
 - If there is data change signal, trigger retraining, otherwise cancel it.

SELECT ts1, ts2, flag2 AS signal, CASE WHEN signal > 0 THEN AIDCSVMtrain(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31, f32, f33, f34, f35, f36, f37, f38, f39, f40, f41, f42, '/home/admin/Striim/IntelAICon/appData/arffHeader.txt', '/home/admin/Striim/IntelAICon/appData/trainData.arff', '-S 2 -K 2 -D 3 -G 0.1 -R 0.0 -N 0.1 -M 40.0 -C 1.0 -E 0.001 -P 0.1', '/home/admin/Striim/IntelAICon/idsOneClass.model') ELSE 1 END as status, CASE WHEN signal > 0 THEN 'retrain' ELSE 'model serving' END as retrainMsg FROM triggerStream;

Deploy *monitor* application (*anomalyDetection* and *retrain* have been deployed in Task 2)

View Flow of *monitor*

monitor	:	🖾 Manage Flow
0 Sources, 2 WActionStores		📥 Monitor App
0 msg/s 1775 WActions		Export TQL
IntelAIDC		Start
		🕤 Undeploy

- Monitor traffic (normal and abnormal)
 sources and destinations
- Monitor No. of network flows an anomalies
- Alert on data pattern change
- Alert on retraining

Monitor traffic sources and destinations

Monitor abnormal traffic sources and destinations

select datetime, 'srcIP' as name, 'anomaly' as flowType, to_string(lst) as IP from alertStream s, iterator(s.anomalySrc) lst;

select datetime, 'dstIP' as name, 'anomaly' as flowType, to_string(lst) as IP from alertStream s, iterator(s.anomalyDst) lst;

 Monitor abnormal traffic sources and destinations

tenSecBatch2

Jumping

Mode (i)

Monitor abnormal traffic sources and destinations

Feed monitor stream into **WactionStore**

FeedIPsum

</>

QUERY

- Monitor No. of network flows and anomalies
- Feed stream into **WactionStore**

OUERY

NIDS Task 3 (2): Build Dashboard

- 1. Start applications monitor, then retrain, then anomalyDetection
- 2. Navigate to Dashboard and view NIDSDash to see real-time visualization

3. Click "Network Traffic Monitor" on the main page to drill down and to see anomaly details

\$	Dashboard				Help) റ Admin 🧃			
IntelAID	C.NIDSDash > anomalyRecord		Q Search		Real Time 📲 Pause 🖋 B	Edit 🕹 Export 🎓 Embed			
ß	Abnormal Flow Monitor								
٢	50		.		www.	www.hohoodr			
A	0 May 23rd 2018 10:30:00 am	May 23rd 2018 10:40:00 am		May 23rd 2018 10:50:00 am	May 23rd 2018 11:00:00 am				
	Abnori	mal Source		Abnormal	Destination				
	DATETIME 🚔 🕴 I	IP:PORT I	NUMBER	I DATETIME 🔶	I IP:PORT I	NUMBER I			
	May 23 2018, 11:07:51 am	192.168.202.110:33004		May 23 2018, 11:07:41 am	192.168.202.102:4290	1			
	May 23 2018, 11:07:51 am	192.168.202.110:48488		May 23 2018, 11:07:41 am	192.168.202.102:4288	1			
	May 23 2018, 11:08:01 am	192.168.202.83:44409		May 23 2018, 11:07:41 am	192.168.206.44:26	1			
	May 23 2018, 11:08:01 am	192.168.22.101:25		May 23 2018, 11:07:41 am	192.168.27.102:26	1			
	May 23 2018, 11:08:01 am	192.168.202.83:89414		May 23 2018, 11:07:51 am	192.168.206.44:26	5			
	May 23 2018, 11:08:01 am	192.168.202.83:59441	1 Message Lo	May 23 2018, 11:07:51 am	192.168.27.253:80	3			

Learn More About Striim Product

Click *Edit* on the top right corner of dashboard to see how to configure a visualization chart.

Open a new tab _

1. Go to Source Preview -> Browse -> choose tcpdumpData.csv to preview

2. Set columndelimiter as ",", configure column name and type, save as source

3. Set application name as "firstStriimApp", and source name as "firstStriimSource"

4. Edit a continuous query with SQL-like language, deploy your application and run to see output.

Key Takeaways

Streaming integration paves the way to ML operationalization

Striim provides reliable and efficient streaming integration solution

Support fast-track ML operationalization

Striim filters, enriches and prepares streaming data

Striim lands data continuously for model training

Striim supports continuous model serving on data streams

Striim handles model lifecycles with high automation

Striim visualizes the real-time data and predictions, and alerts on issues

