THE AI DEVCON 2018

APPLIED MACHINE LEARNING AT FACEBOOK: A DATACENTER INFRASTRUCTURE PERSPECTIVE

Kim Hazelwood

Facebook AI Infrastructure

RE-EMERGENCE OF MACHINE LEARNING

Gradient-Based Learning Applied to Document Recognition, LeCun et al., 1998

AIDC

WHY NOW?

MACHINE LEARNING EXECUTION FLOW

LET'S ANSWER SOME PRESSING QUESTIONS

- How does Facebook leverage machine learning?
- Does Facebook design hardware? For machine learning?
- Does Facebook design machine learning platforms and frameworks?
- Are these hardware and software solutions available to the community?
- What assumptions break when scaling to 2B people?

HOW DOES FACEBOOK USE MACHINE LEARNING?

MAJOR SERVICES AND USE CASES

WHAT ML MODELS DO WE LEVERAGE?

HOW OFTEN DO WE TRAIN MODELS?

HOW LONG DOES TRAINING TAKE?

HOW MUCH COMPUTE DOES INFERENCE CONSUME?

LET'S ANSWER SOME PRESSING QUESTIONS

- How does Facebook leverage machine learning?
- Does Facebook design hardware? For machine learning?
- Does Facebook design machine learning platforms and frameworks?
- Are these hardware and software solutions available to the community?
- What assumptions break when scaling to 2B people?

FACEBOOK AI ECOSYSTEM

Frameworks: Core ML Software Caffe2 / PyTorch / etc

Platforms: Workflow Management, Deployment FB Learner

Large-Scale Infrastructure Servers, Storage, Network Strategy

THE INFRASTRUCTURE VIEW

DOES FACEBOOK DESIGN HARDWARE?

- Yes! All designs released through the Open Compute Project since 2010
- Facebook Server Design Philosophy
 - Identify a **small number** of **major services** with unique resource requirements
 - Design servers for those major services

For the web tier and other "stateless services"

Open Compute "Sleds" are 2U x 3 Across in an Open Compute Rack

For compute or memory-intensive workloads:

BRYCE CANYON AND LIGHTNING

For storage-heavy workloads

BIG BASIN

In 2017, we transitioned from Big Sur to Big Basin GPU Servers for ML training

Big Sur Integrated Compute 8 Nvidia M40 GPUs

Big Basin JBOG Design (CPU headnode) 8 Nvidia V100 GPUs per Big Basin

LET'S ANSWER SOME PRESSING QUESTIONS

- How does Facebook leverage machine learning?
- Does Facebook design hardware? For machine learning?
- Does Facebook design machine learning platforms and frameworks?
- Are these hardware and software solutions available to the community?
- What assumptions break when scaling to 2B people?

FACEBOOK AI FRAMEWORKS

- Used for Production
- Stability
- Scale & Speed
- Data Integration
- Relatively Fixed

- Used for Research
- Flexible
- Fast Iteration
- Debuggable
- Less Robust

Vendor and numeric libraries

INTEL AI DEVCON 201

FACEBOOK AI ECOSYSTEM

Frameworks: Core ML Software Caffe2 / PyTorch / etc

Platforms: Workflow Management, Deployment FB Learner

Large-Scale Infrastructure Servers, Storage, Network Strategy

FB LEARNER PLATFORM

- AI Workflow
- Model Management and Deployment

TYING IT ALL TOGETHER

What changes when you scale to over

2 BILLION PEOPLE

Santa Clara, California Ashburn, Virginia Prineville, Oregon Forest City, North Carolina Lulea, Sweden Altoona, Iowa Fort Worth, Texas Clonee, Ireland Los Lunas, New Mexico Odense, Denmark New Albany, Ohio Papillion, Nebraska 12

SCALING CHALLENGES / OPPORTUNITIES

Lots of Data

Lots of Compute

SCALING CHALLENGES / OPPORTUNITIES: DATA

Lots of Data

Data quality (and potentially quantity) correlates well with user experience

Network design matters Geographic locations matter Database configs matter

SCALING CHALLENGES / OPPORTUNITIES: COMPUTE

Lots of Compute

Can leverage idle resources on nights and weekends for "free"

Must consider geographic resource distribution

SCALING OPPORTUNITY: FREE COMPUTE!

SCALING CHALLENGES: DISASTER RECOVERY

- Seamlessly handle the loss of an entire datacenter
- Geographic compute diversity becomes critical
- Delaying even the offline training portion of machine learning workloads has a measurable impact

KEY TAKEAWAYS

Facebook Al

Lots of Data

Full stack challenges

Global scale

THE AI DEVCON 2018