

TOPOLOGICAL DATA ANALYSIS WITH PERSISTENT HOMOLOGY

Bryn Keller 24-May-2018

ABSTRACTION AND GENERALIZATION

... a necessary transformational development that we can expect in the field of machine learning is a move away from models that perform purely pattern recognition and can only achieve local generalization, towards models capable of abstraction and reasoning, that can achieve extreme generalization.

https://blog.keras.io/the-future-of-deep-learning.html

Francis Chollet

ABSTRACTION AND GENERALIZATION

... a necessary transformational development that we can expect in the field of machine learning is a move away from models that perform purely pattern recognition and can only achieve local generalization, towards models capable of abstraction and reasoning, that can achieve extreme generalization.

https://blog.keras.io/the-future-of-deep-learning.html

Francis Chollet

MY RECENT WORK

2-Parameter Persistent Homology Nearest Neighbor Search on Metric Spaces

Deep Learning

Search for new medicines

Humpback whale health assessment

Even better search for new medicines?

Power tool of modern mathematics

Fashionslide at English Wikipedia

1

NOISY SAMPLES FROM THAT SHAPE

Ghrist 2008

PICK A DISTANCE ϵ , Make ϵ -balls around the points

CAN WE RECOVER A TOPOLOGICALLY EQUIVALENT SHAPE?

BETTI NUMBERS: A CODE FOR COMPARING SHAPES

- β₀ counts connected components zero dimensional "holes": solid objects
- β_1 counts **tunnels**, or holes you can poke a finger through
- β_2 counts **voids** or bubbles
- β_n counts n-dimensional holes generally

A SIMPLE DESCRIPTION

 β_0 (connected components): 1 β_1 (tunnels): 1 β_2 (voids): 0

HOMOLOGY: MAKE A COMPLEX OUT OF DATA, COUNT THE HOLES

PERSISTENT HOMOLOGY

It's all a question of scale

INCREASING E

VISUALIZE VR-COMPLEX BUILDING

BIG IDEA OF PERSISTENT HOMOLOGY

- Don't try to *pick the right value* for ϵ , try them all!
 - as the parameter changes, holes will come and go
 - long lasting holes are the ones we should care about
- So we build a *collection* of simplicial complexes
 - one complex for each value of ϵ where we get different results
 - this collection is called a *filtration*

CONNECTED COMPONENTS

CONNECTED COMPONENTS & TUNNELS

WHAT SHAPE IS THIS DATASET?

Ripser

Persistence intervals in dimension 1:

2-PARAMETER PERSISTENT HOMOLOGY

More is better.

Lesnick & Wright 2015

SOLUTION: 2-PARAMETER PERSISTENT HOMOLOGY

- Sweep 2 parameters, not just one, build *bifiltrations* instead of filtrations
- Second parameter depends on data & problem
 - Can be structural, e.g.:
 - "how many points are in close proximity of this point?"
 - "how close is this point to the center of the graph?"
 - Can be domain-specific, like atomic mass in a molecule

BIFILTRATIONS

GRADED DIMENSION VISUALIZATION WITH RIVET

2 VIEWS OF ASPIRIN

THE NOISY CIRCLE IN 2-PARAM PERSISTENCE

THE NOISY CIRCLE IN 2-PARAM PERSISTENCE

LEARNING & PERSISTENT HOMOLOGY

Better together.

MANY KINDS OF LEARNING

- Learn the parameters for persistent homology itself
- Topological features as input for GLM
- Topological features as input for DL
- Analyze data sets with TDA to drive DL architecture
- And more...

Same data, different shapes!

DATA-FIRST ARCHITECTURE SELECTION

DATA-FIRST ARCHITECTURE SELECTION

Probability of expressing $H_0(\mathcal{D})$.

PERSISTENT HOMOLOGY

- Powerful technique for understanding data
- Strong theoretical foundations
- Rapidly growing interest among researchers
- A new frontier for enhancing AI

RIVET (RANK INVARIANT VISUALIZATION AND EXPLORATION TOOL)

- Tool for calculating 2-parameter persistence from data and visualizing it
- Invented by Mike Lesnick & Matthew Wright in about 2013, with help for the last couple of years from me and others
 - Paper: Lesnick, M., & Wright, M. (2015). Interactive Visualization of 2-D Persistence Modules. <u>https://arxiv.org/abs/1512.00180</u>
- Get it at <u>http://rivet.online</u>

RIPSER

- By Ulrich Bauer, paper not yet published but software already freely available at <u>http://ripser.org</u>
- Fast C++ tool for persistent homology, including a web version you can try out at http://live.ripser.org
- Feed it your distance matrix (or some other formats) and it will give you barcodes

SIMPLICIAL COMPLEX

Wikipedia

DECISION BOUNDARIES

Decision Tree

