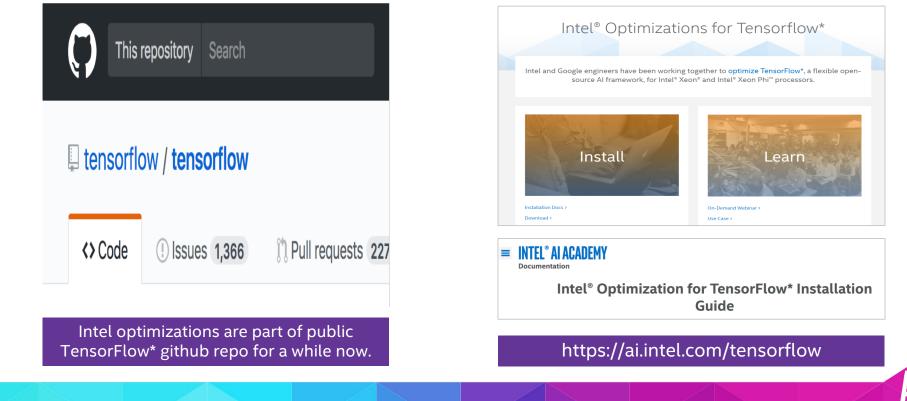


$\textbf{TENSORFLOW* OPTIMIZED FOR INTEL}^{\circledast} \textbf{ XEON}^{\textsf{TM}}$

Niranjan Hasabnis, Intel 24th May, 2018

*Other names and brands may be claimed as the property of others


OUTLINE

- 1. Current status
- 2. Intel-TensorFlow optimization details
- 3. Using Intel-optimized TensorFlow*

*Other names and brands may be claimed as the property of others

INTEL-OPTIMIZED TENSORFLOW

*Other names and brands may be claimed as the property of others

INTEL-OPTIMIZED TENSORFLOW PERFORMANCE AT A GLANCE

TRAINING THROUGHPUT

14X

Intel-optimized TensorFlow ResNet50 training performance compared to default TensorFlow for CPU

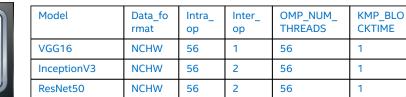
Inference and training throughput uses FP32 instructions

INFERENCE THROUGHPUT

Intel-optimized TensorFlow InceptionV3 inference throughput compared to Default TensorFlow for CPU System configuration:

CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlowSource:


https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks:

https://github.com/tensorflow/benchmarks

Unoptimized TensorFlow may not exploit the best performance from Intel CPUs.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>http://www.intel.com/performance</u>. Copyright © 2018, Intel Corporation

INTEL-OPTIMIZED TENSORFLOW TRAINING PERFORMANCE

Training Improvement with Intel-optimized TensorFlow over Default (Eigen) CPU Backend

Improvement with Intel-optimized TensorFlow (NHWC)
 Improvement with Intel-optimized TensorFlow (NCHW)

System configuration:

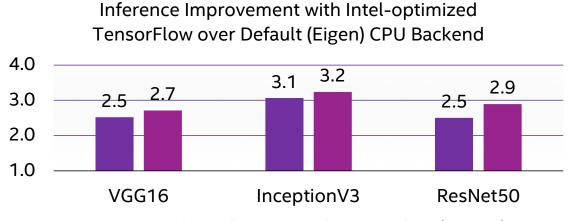
CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlowSource:

https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks: https://github.com/tensorflow/benchmarks

Model Data fo Intra Inter OMP NUM KMP BLO THREADS CKTIME rmat op op **NCHW** 56 1 56 1


 VGG16
 NCHW
 56
 1
 56
 1

 InceptionV3
 NCHW
 56
 2
 56
 1

 ResNet50
 NCHW
 56
 2
 56
 1

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>http://www.intel.com/performance</u>. Copyright © 2018, Intel Corporation

INTEL-OPTIMIZED TENSORFLOW INFERENCE PERFORMANCE

Improvement with Intel-optimized TensorFlow (NHWC)

Improvement with Intel-optimized TensorFlow (NCHW)

System configuration:

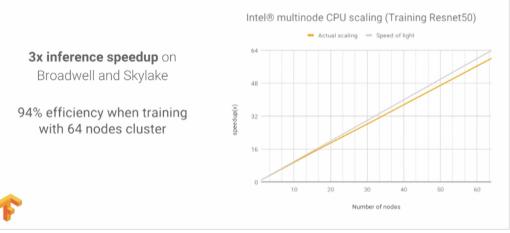
CPU Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz Stepping: 4 HyperThreading: ON Turbo: ON Memory 376GB (12 x 32GB) 24 slots, 12 occupied 2666 MHz Disks Intel RS3WC080 x 3 (800GB, 1.6TB, 6TB) BIOS SE5C620.86B.00.01.0004.071220170215 OS Centos Linux 7.4.1708 (Core) Kernel 3.10.0-693.11.6.el7.x86_64

TensorFlowSource:

https://github.com/tensorflow/tensorflow TensorFlow Commit ID: 926fc13f7378d14fa7980963c4fe774e5922e336.

TensorFlow benchmarks:

https://github.com/tensorflow/benchmarks

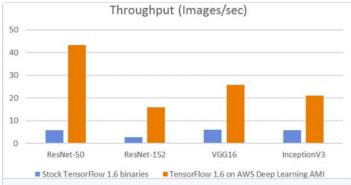

Model	Data_fo rmat	Intra_ op	Inter_ op	OMP_NUM_ THREADS	KMP_BLO CKTIME
VGG16	NCHW	56	1	56	1
InceptionV3	NCHW	56	2	56	1
ResNet50	NCHW	56	2	56	1

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>http://www.intel.com/performance</u>. Copyright © 2018, Intel Corporation

PERFORMANCE GAINS REPORTED BY OTHERS

Intel TensorFlow Scalability Results Presented by Google @TF Summit March 30, '18

TensorFlow with Intel® MKL-DNN integration



"By making use of [Intel's] open source library [MKL-DNN], we were able to achieve a 3x performance benefit and great scaling efficiency on training. This is an example of how important it is to have strong collaborations with companies like Intel." Matt Wood <

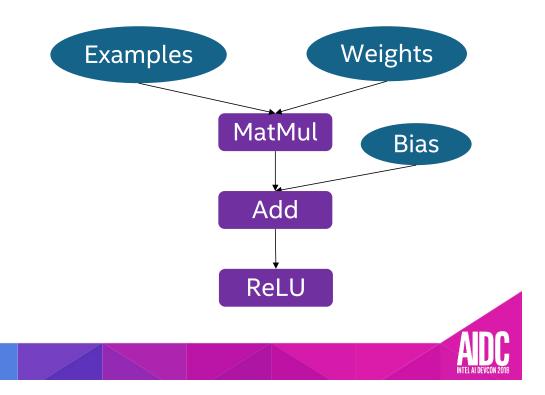
(intel)

Follow

New optimized TensorFlow build for EC2 C5 instances (7.4x training performance improvement over stock TF 1.6) - now available on the #AWS Deep Learning AMI, Ubuntu, and Amazon Linux:

Faster training with optimized TensorFlow 1.6 on Amazon EC2 C5 and P3 inst... The AWS Deep Learning AMIs come with latest pip packages of popular deep learning frameworks pre-installed in separate virtual environments so that develo... aws.amazon.com

INSIDE INTEL-OPTIMIZED TENSORFLOW


INTEL-TENSORFLOW OPTIMIZATIONS

- 1. Operator optimizations
- 2. Graph optimizations
- 3. System optimizations

OPERATOR OPTIMIZATIONS

• In TensorFlow, computation graph is a data-flow graph.

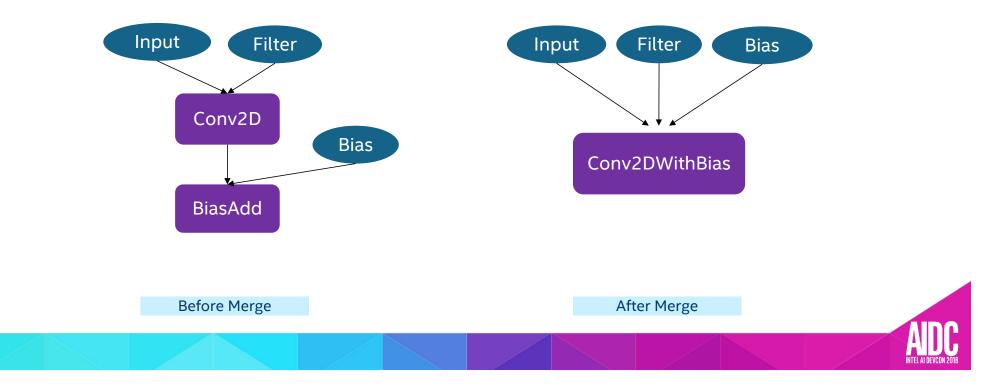
OPERATOR OPTIMIZATIONS

- Replace default (Eigen) kernels by highly-optimized kernels (using Intel[®] MKL-DNN)
- Intel[®] MKL-DNN has optimized a set of TensorFlow operations.
- Library is open-source (<u>https://github.com/intel/mkl-dnn</u>) and downloaded automatically when building TensorFlow.

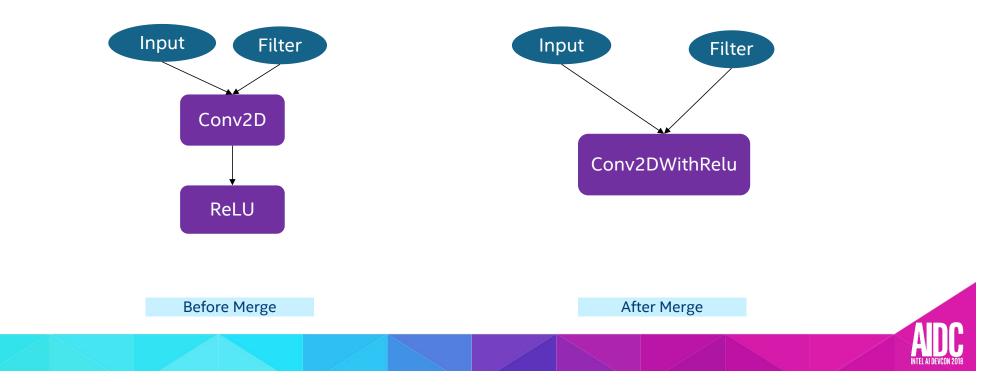
Forward	Backward						
Conv2D	Conv2DGrad						
Relu, TanH, ELU	ReLUGrad, TanHGrad, ELUGrad						
MaxPooling	MaxPoolingGrad						
AvgPooling	AvgPoolingGrad						
BatchNorm	BatchNormGrad						
LRN	LRNGrad						
MatMul, Concat							

OPERATOR OPTIMIZATIONS IN RESNET50

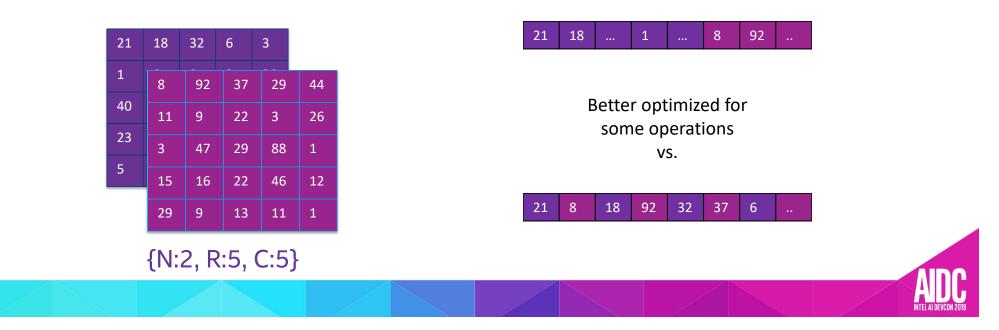
Record Save Load t	imeline.json			
		0 s		
 /job:localhost/replica:0/tas 	K:0/device:CPU:	U Compute (pid 1)		
)				
2				
3005 items selected.	Slices (3005)	1		
Name 🗢			Wall Duration 💌	Self time 🗢
MklConv2DBackpropFilter	<u>r</u>		545.502 ms	545.502 ms
MklConv2DBackpropInpu	<u>t</u>		440.090 ms	440.090 ms
MklConv2D	391.094 ms	391.094 ms		
_MklFusedBatchNormGrad	1		184.920 ms	184.920 ms
_MkIFusedBatchNormWith	Relu		158.366 ms	158.366 ms
MkIReluGrad			155.874 ms	155.874 ms
MklAdd			109.858 ms	109.858 ms
MklAddN			103.248 ms	103.248 ms
Slice			84.905 ms	84.905 ms
Pad			38.684 ms	38.684 ms
ApplyMomentum			32.977 ms	32.977 ms
L2Loss			28.264 ms	28.264 ms
<u>MkIToTf</u>			22.379 ms	22.379 ms
VariableV2			19.422 ms	19.422 ms


Record Save Lo	ad	rn50.eigen.json	View Options									
			0 s									5 s
 /job:localhost/replic 	a:0/ta	ask:0/device:CPU:0	Compute (pid 1)				_					
0												
1												
2												
3												
4												
5												
1490 items select	ed.	Slices (1490)										
Name 🗢				Wall	Dura	ation	•	Se	elf ti	me	∇	
FusedBatchNormGra	ad				7,933	8.108	ms	5 7	7,933	3.10)8 m	าร
Conv2DBackpropInp	<u>out</u>				3,139	.385	ms	3 3	3,13	9.38	35 m	ıs
Conv2DBackpropFilt	ter				2,539	9. 36 5	ms	3 2	2,539	9.36	65 m	ıs
FusedBatchNorm					873	3.292	ms	3	873	3.29	92 m	ıs
Conv2D					640	.633	ms	5	640	0.63	33 m	าร
ReluGrad					74	.733	ms	3	74	4.73	33 m	ıs
AddN					68	8.955	ms	3	68	8.95	55 m	ıs
Add					38	8.213	ms	3	38	8.21	3 m	าร
Relu					38	8.010	ms	3	38	8.01	0 m	าร

Intel-optimized TensorFlow timeline

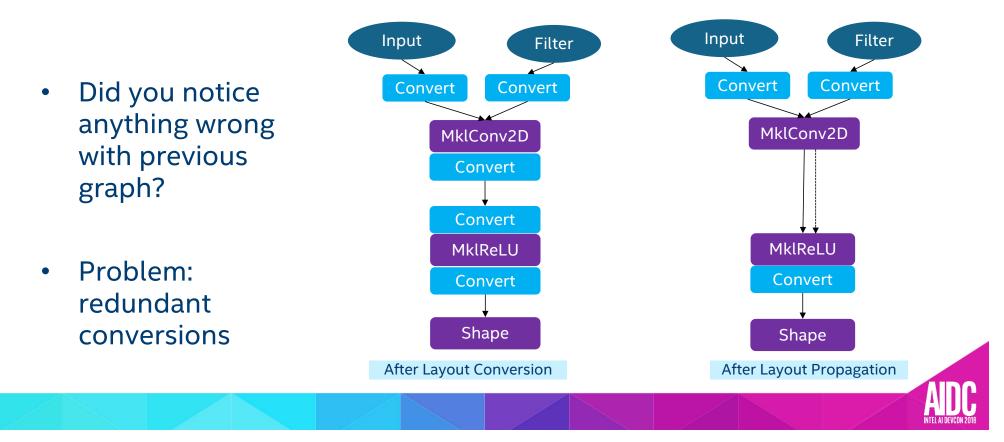

Default TensorFlow timeline

GRAPH OPTIMIZATIONS: FUSION

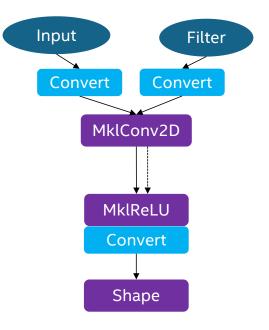


GRAPH OPTIMIZATIONS: FUSION

GRAPH OPTIMIZATIONS: LAYOUT PROPAGATION


- What is layout?
 - How do we represent N-D tensor as a 1-D array.

GRAPH OPTIMIZATIONS: LAYOUT PROPAGATION


Input Filter Input Filter Converting to/from optimized layout can Convert Convert Conv2D be less expensive than MklConv2D operating on un-Convert optimized layout. ReLU Convert **MklReLU** All MKL-DNN operators Convert Shape use highly-optimized layouts for TensorFlow Shape tensors. Initial Graph After Layout Conversions

GRAPH OPTIMIZATIONS: LAYOUT PROPAGATION

SYSTEM OPTIMIZATIONS: LOAD BALANCING

- TensorFlow graphs offer opportunities for parallel execution.
- Threading model
 - 1. inter_op_parallelism_threads = max
 number of operators that can be executed
 in parallel
 - 2. intra_op_parallelism_threads = max
 number of threads to use for executing an
 operator
 - 3. OMP_NUM_THREADS = MKL-DNN equivalent
 of intra_op_parallelism_threads

SYSTEM OPTIMIZATIONS: LOAD BALANCING

- Incorrect setting of threading model parameters can lead to over- or under-subscription, leading to poor performance.
- Solution:
 - Set these parameters for your model manually.
 - Guidelines on TensorFlow webpage

OMP: Error #34: System unable to allocate necessary resources for OMP thread:

OMP: System error #11: Resource temporarily unavailable

OMP: Hint: Try decreasing the value of OMP_NUM_THREADS.

SYSTEM OPTIMIZATIONS: MEMORY ALLOCATION

- Neural network operators (Conv2D) in TensorFlow can allocate large chunks of memory.
- Default CPU allocator did not handle this scenario well:
 frequent alloc/dealloc -> frequent mmap/munmap
- We implemented Pool allocator to fix the problem.

RUNNING YOUR NEURAL NETWORK MODEL WITH Intel-optimized tensorflow

https://ai.intel.com/tensorflow

STEP 1: GETTING INTEL-OPTIMIZED TENSORFLOW

It is easy.

GETTING INTEL-OPTIMIZED TENSORFLOW: USING PIP

Python 2.7
pip install https://anaconda.org/intel/tensorflow/1.6.0/download/tensorflow1.6.0-cp27-cp27mu-linux_x86_64.whl

Python 3.5
pip install https://anaconda.org/intel/tensorflow/1.6.0/download/tensorflow1.6.0-cp35-cp35m-linux_x86_64.whl

Python 3.6
pip install https://anaconda.org/intel/tensorflow/1.6.0/download/tensorflow1.6.0-cp36-cp36m-linux_x86_64.whl

GETTING INTEL-OPTIMIZED TENSORFLOW: USING INTEL DISTRIBUTION OF PYTHON (IDP)

• If IDP is installed

conda install tensorflow -c intel

• Install and activate full IDP package

conda create -n idpFull -c intel intelpython3_full
activate idpFull

GETTING INTEL-TENSORFLOW: BUILD FROM SOURCE

- \$ git clone https://github.com/tensorflow/tensorflow.git
- \$ cd tensorflow
- \$./configure
- \$ bazel build --config=opt --config=mkl
- //tensorflow/tools/pip_package:build_pip_package
- \$ bazel-bin/tensorflow/tools/pip_package/build_pip_package ~/path_to_save_wheel
- \$ pip install --upgrade --user ~/path_to_save_wheel
 /<wheel_name.whl>

I got Intel-optimized TensorFlow, do I run my model now?

STEP 2: PERFORMANCE GUIDE

	Develop									
		PERFC	ORMANCE	MOBILE						
Performance Performance Guide Input Popline Performance Models Benchmarks Fixed Point Quantization XLA XLA Overview Broadcasting semantics Developing a new backend for XLA Using JT Compliation Operation Semantics Shapes and Layout Using AOT compliation TensorFlow Versions	the instructions Beyond using th Networks (intel® simply referred to optimizations. The two configur • intra_op the individ • inter_op These configura the snippet belo cores. Testing h	ludes Intel® supported b e latest instr ® MKL-DNN) to as 'MKL' or rations lister _paralleli ual pieces in _paralleli tions are set w. For both a	wy the target ruction sets) to TensorFi d below are .sm_thread to this poo .sm_thread t via the if configuratic iat the defa	t CPU. s, Intel® has a Flow. While the pow with MKL. e used to optim is : Nodes that I. is : All ready nu . ConfigProt on options, if t ult is effective	dded support fo e name is not co TensorFlow with nize CPU perforr can use multipl odes are schedu o and passed to hey are unset or for systems ran	the Intel® M mpletely accu Intel® MKL-D nance by adju e threads to p led in this poor tf.Session set to 0, will d ging from one	rrFlow is built from source ath Kernel Library for Dee irrate, these optimizations NN contains details on ti usting the thread pools. avarallelize their execution pl. in the config attribute default to the number of I c CPU with 4 cores to mu umber of threads in both	p Neural are often he MKL will schedu as shown ogical CPU tiple CPUs	ule	Contents General best practices Input pipeline optimization Data formats Common fused Ops RNN Performance Building and installing from source Optimizing for GPU Optimizing for GPU Optimizing for GPU TensorFlow with Intel® MKL DNN Comparing compiler optimizations
	to the number of config = tf config.intr config.intr tf.session(The Comparing TensorFlow v	f physical co f.ConfigPro a_op_paral config=con compiler op with Intel®	ores rather t oto() llelism_th llelism_th ifig) timizations MKL DN	than logical co reads = 44 reads = 44 section conta	ins the results o	f tests that us	sed different compiler op	•••	6	
							'hi™ though the use of In he optimizations also pro			

https://www.tensorflow.org/performance/performance guide#tensorflow with intel mkl dnn

speedups for the consumer line of processors, e.g. i5 and i7 Intel processors. The Intel published paper TensorFlow*

Optimizations on Modern Intel® Architecture contains additional details on the implementation.

PERFORMANCE TIPS

- Use pre-built wheel with MKL-DNN optimizations (method 1)
- 2. Setting the threading model correctly
 - We provide best settings for popular CNN models. (<u>https://ai.intel.com/tensorflow-optimizations-intel-xeon-scalable-processor</u>)

Tuning MKL for the best performance

This section details the different configurations and environment variables that can be used to tune the MKL to get optimal performance. Before tweaking various environment variables make sure the model is using the NCHW (channels_first) data format. The MKL is optimized for NCHW and Intel is working to get near performance parity when using NHWC.

MKL uses the following environment variables to tune performance:

- KMP_BLOCKTIME Sets the time, in milliseconds, that a thread should wait, after completing the execution of a parallel region, before sleeping.
- KMP_AFFINITY Enables the run-time library to bind threads to physical processing units.
- KMP_SETTINGS Enables (true) or disables (false) the printing of OpenMP* run-time library environment variables during program execution.
- OMP_NUM_THREADS Specifies the number of threads to use.

https://www.tensorflow.org/performance/performance_guide#te nsorflow_with_intel_mkl_dnn

SUMMARY

- Intel-optimized TensorFlow improves TensorFlow CPU performance by up to 14X.
- Getting Intel-optimized TensorFlow is easy.
- TensorFlow performance guide is the best source on performance tips.
- Stay tuned for updates <u>https://ai.intel.com/tensorflow</u>

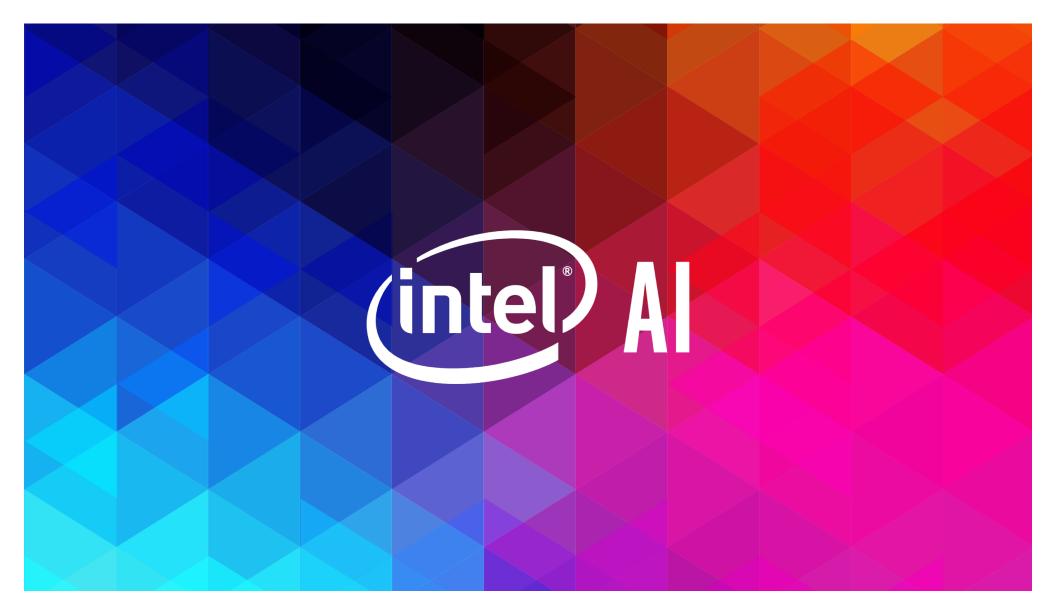
LEGAL DISCLAIMERS

- Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
 processor families: Go to: Learn About Intel® Processor Numbers http://www.intel.com/products/processor_number
- Some results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.
- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
- Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems available for purchase.
- Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actual benchmark result for the baseline platform into each of the specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the performance improvements reported.
- SPEC, SPECint, SPECfp, SPECrate, SPECpower, SPECjbb, SPECompG, SPEC MPI, and SPECjEnterprise* are trademarks of the Standard Performance Evaluation Corporation. See http://www.spec.org for more information.
- TPC Benchmark, TPC-C, TPC-H, and TPC-E are trademarks of the Transaction Processing Council. See http://www.tpc.org for more information.
- No computer system can provide absolute reliability, availability or serviceability. Requires an Intel[®] Xeon[®] processor E7-8800/4800/2800 v2 product families or Intel[®] Itanium[®] 9500 series-based system (or follow-on generations of either.) Built-in reliability features available on select Intel[®] processors may require additional software, hardware, services and/or an internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details.

For systems also featuring Resilient System Technologies: No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Run Sure Technology-enabled system, including an enabled Intel processor and enabled technology(ies). Built-in reliability features available on select Intel® processors may require additional software, hardware, services and/or an Internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details.

For systems also featuring Resilient Memory Technologies: No computer system can provide absolute reliability, availability or serviceability. Requires an Intel® Run Sure Technology-enabled system, including an enabled Intel® processor and enabled technology(ies). built-in reliability features available on select Intel® processors may require additional software, hardware, services and/or an Internet connection. Results may vary depending upon configuration. Consult your system manufacturer for more details.

OPTIMIZATION NOTICE


Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

