THE ALDEVCON 2018

DEEP LEARNING IN RESOURCE-CONSTRAINED ENVIRONMENTS

Dave Ojika, PhD Bhavesh Patel, Dell EMC AI Architect

Intel Collaborators: Shawn Slockers, Chris Branch

IMAGE CLASSIFICATION WITH CNN

ResNet architecture

		Input	Output	Layers	Operations
CNN	AlexNet	150,528	1,000	4	61 millions
	ResNet-50	150,528	1,000	50	3.8 billions

CNN PREDICTIONS

<pre>Image///asplos.jpeg</pre>				
819	0.2742987	label	#819	
762	0.0785879	label	#762	
498	0.0540126	label	#498	
406	0.0476660	label	#406	
887	0.0420651	label	#887	
892	0.0371223	label	#892	
632	0.0289109	label	#632	
851	0.0225158	label	#851	
624	0.0175353	label	#624	
818	0.0154749	label	#818	
		(CNN result	

	816	n04275548 spider web, spider's web
I	817	n04277352 spindle
I	818	n04285008 sports car, sport car
	819	n04286575 spotlight, spot
I	820	n04296562 stage
	821	n04310018 steam locomotive
l	822	n04311004 steel arch bridge

synset_words.txt

CNN IN MISSION-CRITICAL APPLICATIONS

- 1. Latency: streaming at batch size of 1
- 2. Power efficiency: particularly in embedded solutions
- 3. Developer productivity: emergence of new hardware

CNN OVERVIEW

POPULAR CNN MODELS

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

ACCELERATING INFERENCE

Goal

A. Flexibly import model

- B. Optimize FP computation
- C. Deterministic low-latency (with Intel FPGA)
- D. Increased developer-productivity (with Intel OpenVINO)

FIELD-PROGRAMMABLE GATE ARRAY (FPGA)

Contemporary

Benefits:

- Flexibility
- High-throughput
- Low-latency
- Power-efficient

- Why FPGA for CNN • 1.5 TFLOPs floating-point performance (on A10)
- 8 TB/s on-chip memory bandwidth

1. INTEL PROGRAMMABLE ACCELERATOR CARD

Programmable Accelerator Card (PAC) with Arria-10

- Low-power (50 W) add-in card
- Accelerates image recognition CNNs
- Configurable with reduced-precision arithmetic (FP8 ... FP11)

2. SOFTWARE STACK

3. DEVELOPMENT TOOLKIT - OPENVINO

CNN INFERENCE: COMPLETE SOLUTION

- 1. PAC hardware
- 2. Acceleration Stack software
- 3. OpenVINO developer toolkit

System Configuration

Server	PowerEdge R740xd with Intel PAC
CPU	2-socket Xeon Gold CPU @ 2.1GHz
RAM	196 GB
SSD	600 GB

OPENVINO AT WORK BY UF GRAD STUDENTS

Shreyas and Nirali. Thanks to Intel and Dell

INFERENCE PERFORMANCE WITH FP 11 PRECISION

LATENCY (TURN-AROUND TIME) WITH FP11 PRECISION

CNN IN HEP Fast particle-prediction with deep learnir

Performance Metrics

System Constraints

WIN DEDENS AWS DEEPLENS AIDEVCONAPP.INTEL.COM

aws

intel

Completing a session evaluation in the mobile app by 10:00 a.m. tomorrow automatically enters you in a drawing to win.

Copies of the complete sweepstakes rules are available at the Concierge Desks.

THE ALDEVCON 2018