PORTABILITY AND PERFORMANCE IN EMBEDDED DEEP NEURAL NETWORKS: CAN WE HAVE BOTH?

Cormac Brick
May 24th, 2018
INTEL® MOVIDIUS™ VPU TECHNOLOGY ENABLES POWER-EFFICIENT IMAGE PROCESSING, CV, AND DEEP LEARNING INFERENCE IN EDGE DEVICES
INTEL® Movidius™ VPU Technology ENABLES POWER-EFFICIENT IMAGE PROCESSING, CV, AND DEEP LEARNING INFERENCE IN EDGE DEVICES.
THE QUESTION:

Can we have neural networks that are fast and portable?
THE QUESTION:

Can we have neural networks that are fast and portable without losing any accuracy?
OVERVIEW

- Selecting a fast network
- Making a fast network faster in a portable way
- Network portability: Ecosystems including ONNX
WHAT IS A FAST NETWORK?

Classical approach, look at:

• Number of FLOPS
• Number of parameters
WHAT IS A FAST NETWORK?

Classical approach, look at:
1. Number of flops

Ref[1]
WHAT IS A FAST NETWORK?

Classical approach, look at:
1. Number of FLOPS
2. Number of parameters
WHAT IS A FAST NETWORK?

Classical approach, look at:
1. Number of FLOPS
2. Number of parameters

On Embedded platforms, dataflow is a key determinant of performance, so we should also consider:
3. Activation heap size
 \[\Rightarrow \text{Keep activations in local mem/cache}\]
4. FLOPs/param/layer
 \[\Rightarrow \text{Avoid being DDR bound on weight fetch}\]
ACTIVATION HEAP SIZE

DenseNet

Resnet 50

Long lifetime data – larger heap

Limited lifetime data – smaller heap
ACTIVATION HEAP SIZE – WHAT IF ONLY 1MB L1 MEM?

DenseNet

Resnet 50

Long lifetime data – larger heap

Limited lifetime data – smaller heap
AVERAGE OPS/BYTE ON COMMON VISION NETWORKS

Average OPs/Byte for Network - Higher Better - Log Scale
OVERVIEW

• Selecting a fast network

• Making a fast network faster in a portable way

• Network portability: Ecosystems including ONNX
Refining a Fast Model to Make It Faster

<table>
<thead>
<tr>
<th>Technique</th>
<th>What are we reducing?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prune Networks</td>
<td>OPs, heapSize, #params</td>
</tr>
<tr>
<td>Use 8 bits for activation and weights</td>
<td>OPs</td>
</tr>
<tr>
<td>Use <8 bits for weights / codebook</td>
<td>Parameter bytes</td>
</tr>
<tr>
<td>Sparsify</td>
<td>ModelSize, OPs</td>
</tr>
<tr>
<td>Split 3x3 Conv in to DW separable Conv</td>
<td>OPs</td>
</tr>
<tr>
<td>Use <8 bits for activations</td>
<td>heapSize, OPS</td>
</tr>
</tbody>
</table>
Model Pruning

- Very effective when transfer learning to simpler domains
- Consider pruning to multiples of 8/16 channels. Many hardware implementations have this type of restriction
Fine Grained Pruning for Sparsity
- Good benefit by reducing deployment model size
- Less Weight bandwidth on platforms supporting compression
Reducing Precision of Weights (4b / 2b / 1b)

- Reduce precision
- Benefits over a range of platforms:
 - Save bandwidth on platforms that directly support low precision weights
 - Save a little less bandwidth on platforms that just support compression
 - Can still work on all platforms
INTERSECTION OF PORTABILITY AND MODEL REFINEMENT

- Enhancing portability of 8 bits
 - Dynamic range of activations introduces some risks when determining scale factor
 - Some layers can require higher precision

- Solutions:
 - Train with RELU6: \(y = \min(\max(x, 0), 6) \)
 - Train with Batch Norm, by default keeps \(\sigma=1 \)
<table>
<thead>
<tr>
<th>(PyTorch) ResNet50</th>
<th>#Param bytes (Non Zero)</th>
<th>TOPs</th>
<th>Accuracy @Top1</th>
<th>Ops/Paramter Byte (higher better)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>25.5M</td>
<td>7.66</td>
<td>76.01%</td>
<td>300</td>
</tr>
<tr>
<td>Fine-grained (80% sparse)</td>
<td>5.1M (5x)</td>
<td>7.66</td>
<td>75.68%</td>
<td>1502</td>
</tr>
<tr>
<td>Coarse-grained Pruning</td>
<td>17.2M</td>
<td>3.82 (2x)</td>
<td>74.87%</td>
<td>222</td>
</tr>
<tr>
<td>Hybrid: Coarse then Fine (73% sparse thin)</td>
<td>6.9M</td>
<td>3.82</td>
<td>74.32%</td>
<td>554</td>
</tr>
<tr>
<td>Hybrid + 4b weights</td>
<td>3.5M</td>
<td>3.82</td>
<td>73.81%</td>
<td>1107</td>
</tr>
</tbody>
</table>

⇒ Pruning, sparsity and low precision are compatible and portable
⇒ 0.3%-2.2% accuracy loss, gap reducing over time
<table>
<thead>
<tr>
<th>(PyTorch) ResNet50</th>
<th>#Param bytes (Non Zero)</th>
<th>TOPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>25.5M</td>
<td>7.66</td>
</tr>
<tr>
<td>Fine-grained (80% sparse)</td>
<td>5.1M (5x)</td>
<td>7.66</td>
</tr>
<tr>
<td>Coarse-grained Pruning</td>
<td>17.2M</td>
<td>3.82</td>
</tr>
<tr>
<td>Hybrid: Coarse then Fine (73% sparse thin)</td>
<td>6.9M</td>
<td>3.82</td>
</tr>
<tr>
<td>Hybrid + 4b weights</td>
<td>6.9M</td>
<td>3.82</td>
</tr>
</tbody>
</table>

⇒ Pruning, sparsity and low precision are compatible and portable
⇒ 0.3%-2.2% accuracy loss, gap reducing over time

Learn more by visiting Intel Movidius Team Members in Poster Session Starting at 12pm Today

“Low-precision Sparse Thin Network for Fast Inference on Edge Devices”
INTERSECTION OF PORTABILITY AND MODEL REFINEMENT

SUMMARY

<table>
<thead>
<tr>
<th>Technique</th>
<th>Portability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prune Networks</td>
<td>Good, benefit varies</td>
</tr>
<tr>
<td>Use 8 bits for activation and weights</td>
<td>Good, when used with care</td>
</tr>
<tr>
<td>Use <8 bits for weights / codebook</td>
<td>Good, benefit varies</td>
</tr>
<tr>
<td>Sparsify</td>
<td>Good, benefit varies</td>
</tr>
<tr>
<td>Split 3x3 Conv in to DW separable Conv</td>
<td>Varies</td>
</tr>
<tr>
<td>Use <8 bits for activations</td>
<td>Poor</td>
</tr>
</tbody>
</table>
OVERVIEW

• Selecting a fast network

• Making a fast network faster in a portable way

• Network portability: Ecosystems including ONNX
PORTABLE NETWORK ECOSYSTEMS

• Deploying Model on Multiple Targets
 • OS Specific frameworks
 • DirectML
 • AndroidNN API
 • CoreML
 • Network interchange:
 • ONNX
PORTABILITY: ONNX GOALS

Provide a standard way to represent models so that:

- Serialized models are interoperable between frameworks
- Have a common target for optimization for different backends
ONNX - OVERVIEW
ONNX: OPEN ECOSYSTEM FOR AI MODELS

High level API & Framework Frontends

ONNX

Hardware Vendor Libraries & Devices

ML HW
GPU
CPU
FPGA
DSP

Caffe2
mxnet
Chainer
PaddlePaddle
Cognitive Toolkit
PyTorch
INTEL OPENVINO

Delivers computer vision and deep learning capabilities from edge to cloud.

Agnostic, complementary to major frameworks.

High performance, high efficiency for the edge.

Cross-platform flexibility.

Open source: coming soon.
• Select network carefully considering dataflow implications

• Optimize networks using portable techniques, specifically:
 • Pruning, 8 bit activations, low precision weights, sparsity

• ONNX has strong momentum as ecosystem for portable models
RESOURCES

• Useful Resources:
 • Intel Nervana AI Academy
 • http://www.arxiv-sanity.com/
 • https://github.com/NervanaSystems/distiller

• References:
 • [1] Learning Transferable Architectures for Scalable Image Recognition,
 • [2] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,
 https://arxiv.org/abs/1704.04861
 • [3] To prune, or not to prune: exploring the efficacy of pruning for model compression,
 https://arxiv.org/abs/1710.01878
 • [4] Learning both weights and connections for efficient neural networks,
 https://arxiv.org/abs/1506.02626
 • [5] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,
LEGAL DISCLAIMER

- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

- A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

- Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

- Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

- Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained from the Internet at http://www.intel.com/design/literature.htm.

- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, and operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

- All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

- All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. All dates specified are target dates, are provided for planning purposes only and are subject to change.

- This document contains information on products in the design phase of development. Do not finalize a design with this information. Revised information will be published when the product is available. Verify with your local sales office that you have the latest datasheet before finalizing a design.

- Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

- Intel, the Intel logo, Movidius, Myriad, Nervana, Altera are trademarks of Intel Corporation in the U.S. and/or other countries.

- © Intel Corporation