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Portability and Performance in 
Embedded Deep Neural Networks: Can 
We Have Both?
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The Question:

Can we have neural networks that are fast and portable?



The Question:

Can we have neural networks that are fast and portable

without losing any accuracy?



• Selecting a fast network

• Making a fast network faster in a portable way

• Network portability:  Ecosystems including ONNX

Overview



What is a fast network?

Classical approach, look at:
• Number of FLOPS
• Number of parameters
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What is a fast network?

Classical approach, look at:
1. Number of FLOPS
2. Number of parameters

On Embedded platforms, dataflow is a key determinant of performance, so 
we should also consider:

3.  Activation heap size 
 Keep activations in local mem/cache

4.  FLOPs/param/layer
 Avoid being DDR bound on weight fetch



Activation heap size

Long lifetime data – larger heap Limited lifetime data – smaller heap

DenseNet Resnet 50
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Activation heap size – what if only 1MB L1 Mem?

Long lifetime data – larger heap Limited lifetime data – smaller heap

DenseNet Resnet 50
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Average OPs/Byte on Common Vision Networks

10 100 1000 10000
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googlenet_v2
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googlenet_v3

DenseNet_169

DenseNet_161
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Average OPs/Byte for Network - Higher Better - Log Scale



• Selecting a fast network

• Making a fast network faster in a portable way

• Network portability:  Ecosystems including ONNX

Overview



Refining a Fast model to make it faster

See resources slide for relevant references

Technique What are we reducing?

Prune Networks OPs, heapSize, #params

Use 8 bits for activation and weights OPs

Use <8 bits for weights / codebook Parameter bytes

Sparsify ModelSize, OPs

Split 3x3 Conv in to DW separable Conv OPs

Use <8 bits for activations heapSize, OPS



• Model Pruning

• Very effective when transfer learning to simpler domains

• Consider pruning to multiples of 8/16 channels.  Many hardware 
implementations have this type of restriction

Portability:  Coarse Grained pruning



• Fine Grained Pruning for Sparsity

• Good benefit by reducing deployment model size

• Less Weight bandwidth on platforms supporting compression

Portability:  FINE Grained pruning



• Reducing Precision of Weights  (4b / 2b / 1b)

• Reduce precision 

• Benefits over a range of platforms:

• Save bandwidth on platforms that directly support low precision 
weights

• Save a little less bandwidth on platforms that just support compression

• Can still work on all platforms

Intersection of portability and Model refinement 



• Enhancing portability of 8 bits

• Dynamic range of activations introduces some risks when 
determining scale factor

• Some layers can require higher precision

• Solutions:

• Train with RELU6:   y = min(max(x, 0), 6)

• Train with Batch Norm, by default keeps σ=1

Intersection of portability and Model refinement 



Results
(PyTorch) ResNet50

#Param bytes 
(Non Zero)

TOPs
Accuracy Ops/Paramter 

Byte 
(higher better)@Top1

Baseline 25.5M 7.66 76.01% 300

Fine-grained (80% sparse)
5.1M 
(5x)

7.66 75.68% 1502

Coarse-grained Pruning 17.2M
3.82
(2x)

74.87% 222

Hybrid: Coarse then Fine
(73% sparse thin)

6.9M 3.82 74.32% 554

Hybrid + 4b weights 3.5M 3.82 73.81% 1107

⇒ Pruning, sparsity and low precision are compatible and portable
⇒ 0.3%-2.2% accuracy loss,  gap reducing over time



Results
(PyTorch) ResNet50
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TOPs
Accuracy Ops/Paramter 

Byte 
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Baseline 25.5M 7.66 76.01% 300

Fine-grained (80% sparse)
5.1M 
(5x)

7.66 75.68% 1502

Coarse-grained Pruning 17.2M
3.82
(2x)

74.87% 222

Hybrid: Coarse then Fine
(73% sparse thin)

6.9M 3.82 74.32% 554

Hybrid + 4b weights 6.9M 3.82 73.81% 1107

⇒ Pruning, sparsity and low precision are compatible and portable
⇒ 0.3%-2.2% accuracy loss,  gap reducing over time

Learn more by visiting 
Intel Movidius Team Members 

in Poster Session 

Starting at 12pm Today

“Low-precision Sparse Thin 
Network for Fast Inference 

on Edge Devices”



Intersection of portability and Model refinement 
Summary

Technique Portability

Prune Networks Good, benefit varies

Use 8 bits for activation and weights Good, when used with care

Use <8 bits for weights / codebook Good, benefit varies

Sparsify Good, benefit varies

Split 3x3 Conv in to DW separable Conv Varies

Use <8 bits for activations Poor
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• Deploying Model on Multiple Targets

• OS Specific frameworks 
• DirectML
• AndroidNN API
• CoreML

• Network interchange:
• ONNX

Portable Network Ecosystems



Portability: ONNX Goals

Serialized models are 
interoperable 

between frameworks

Have a common target 
for optimization

for different backends

Provide a standard way to represent 
models so that:



ONNX - Overview



ONNX:  Open Ecosystem for AI Models



delivers computer 
vision and deep 
learning capabilities 
From edge to cloud

High Performance, high Efficiency for the edge

Agnostic, Complementary to major frameworks

Cross-platform flexibility

Open Source:  coming soon



• Select network carefully considering dataflow implications

• Optimize networks using portable techniques, specifically:

• Pruning, 8 bit activations, low precision weights, sparsity

• ONNX has strong momentum as ecosystem for portable models

Key Takeaways



• Useful Resources:
• Intel Nervana AI Academy

• http://www.arxiv-sanity.com/

• https://github.com/NervanaSystems/distiller

• References:
• [1] Learning Transferable Architectures for Scalable Image Recognition, 

https://arxiv.org/abs/1707.07012

• [2] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,

https://arxiv.org/abs/1704.04861

• [3] To prune, or not to prune: exploring the efficacy of pruning for model compression,

https://arxiv.org/abs/1710.01878

• [4] Learning both weights and connections for efficient neural networks, 

https://arxiv.org/abs/1506.02626

• [5] Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference,

https://arxiv.org/abs/1712.05877

Resources

https://software.intel.com/en-us/ai/academy
http://www.arxiv-sanity.com/
https://github.com/NervanaSystems/distiller
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1712.05877
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