

ADVANCING AI PERFORMANCE WITH INTEL® XEON® SCALABLE SYSTEMS

BANU NAGASUNDARAM & VIKRAM SALETORE

ADVANCING AI PERFORMANCE WITH INTEL® XEON® SCALABLE

TIMF TO SOI UTION **PRODUCTION AI**

WORKLOAD & SCAI ARILITY **FXIRILITY** FI

JOURNEY TO PRODUCTION AI

DEEP LEARNING IN DATA CENTERS

IISE OPTIMIZED SW

INTEL AI FOCUS

INTERSECTION OF DATA AND COMPUTE GROWTH

DAILY BY 2020 BUSINESS AVERAGE INTERNET USER 1.5 GB INSIGHTS AUTONOMOUS VEHICLE 4 TB **OPERATIONAL** CONNECTED AIRPLANE 5 TB INSIGHTS SMART FACTORY 1 PB SECURITY INSIGHTS CLOUD VIDEO PROVIDER 750 PB

Source: Amalgamation of analyst data and Intel analysis

DATA ANALYTICS NEEDS A

Today

COMPUTE BREAKTHROUGH

AWLLTRANSFORM

HEALTH

RETAIL

GOVERNMENT

CONSUMER

Smart Assistants Chatbots Search Personalization Augmented Reality Robots

Enhanced Diagnostics Drug Discovery Patient Care Research Sensory Aids

FINANCE

Algorithmic Trading Fraud Detection Research Personal Finance **Risk Mitigation**

Support Experience Marketing Merchandising Loyalty Supply Chain Security

Defense Data Insights Safety & Security Resident Engagement Smarter Cities

Oil & Gas Exploration Smart Grid

ENERGY

Operational Improvement Conservation

TRANSPORT

Autonomous Cars

Automated Trucking Aerospace

Shipping Search & Rescue

INDUSTRIAL

Factory **Automation** Predictive Maintenance Precision Agriculture Field Automation

OTHER

Advertising Education Gaming **Professional & IT** Services Telco/Media Sports

Source: Intel forecast

AI WITH INTEL

feature-extraction-with-bigdl-at-jdcom 5. Intel.ly/fdl2017 6. Refer slide 61 7. Refer slide 62 8. https://software.intel.com/en-us/articles/building-large-scale-image-deep-learning.pdf For more information refer builders.intel.com/ai/solutionslibrary Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: <a href="http://www.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutions and functions. Any change to any of those factors may cause the results to vary. You should consult other informance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: <a href="http://www.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrarySoftware.intel.com/ai/solutionslibrar

INDUSTRIAL

OTHER INTEL **PROJECTS**

Automate increased inspection frequency

SOLAR

FARM

Silicon packaging inspection

Reduced time to train⁸

Significant speedup ⁹

THE JOURNEY TO PRODUCTION AI **TOTAL TIME TO SOLUTION**

7

Evaluation

Iteration

Increase robustness of model with additional data **Re-training and** refine model Tie inference to workflow decision making Optimize for end-user experience

Measure utilization Explore need for additional processing hardware Understand bottlenecks to scaling Assess additional revenue generation models

Source: Intel estimates based on customer data

(intel) AI PORTFOLIO

SOLUTIONS	PLATFORMS	Intel® AI Builders	Intel [®] Deep Learning System [‡]	
	TOOLS	learning	Deep Learning OpenVir oyment Toolkit [†] ToolKi	
	FRAMEWORKS	TensorFlow Caffe [*] mx	net [*] Big Sport *	
	LIBRARIES	Intel® MKL/MKL-D clDNN, DAAL, Intel F Distribution, et DIRECT OPTIMIZA	c. CPU Transformer [†]	
Data Technical Reference Scientists Services Solutions	TECHNOLOGY	t Trade	D-TO-END COMPUTE	

αAlpha available †Beta available Future e claimed as the property of others. re subject to change without notice.

compute

Multi-purpose to purpose-built compute for AI workloads from cloud to device GENERAL

TRAINING IN

MAINSTREAM TRAINING

ACCELERATED DEEP LEARNING G INFERENCE

TARGETED INFERENCE

MAINSTREAM INFERENCE

DEEP LEARNING IN DATA CENTERS

DATA CENTERS - FLEXIBILITY AND SCALABILITY

Demand load across Facebook's fleet over a 24 hour period on 19 September 2017²

Re-provision resources when AI developers do not need system access

BUILT-IN ROI WITH INTEL[®] XEON[®] CLUSTERS Workload Flexibility with Multi-Purpose CPU

ilization estimated on 64-node cluster with Estimated performance on Caffe Resnet 50 inference throughput with 2S Intel[®] Xeon[®] Scalable Platinum 8180 Processor 1012 images/second with Int8, Refer Configuration Details 1 Performance measurements were obtained prior to plementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.Optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, for effectiveness of any intervolvessors not manufactured by Intel. Microprocessors. Please refer to the plicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark doubleMark, are measured using specific computer system, components, software, operations and functions. Any otherse to avail function with other products to avail to ther optimized to results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated information visit.

CPU FOR INFERENCE & TRAINING AT FACEBOOK

The abundance of readily-available CPU capacity makes it a useful platform for both training and inference. This is especially true during the off-peak portions of the diurnal cycle where CPU resources would otherwise sit idle.

Services	Ranking Algorithm	Photo Tagging	Photo Text Generation	Search	Language translation	Spam Flagging	Speech Recognition
Models	MLP	SVM,CNN	CNN	MLP	RNN	GBDT	RNN
Inference Resource	CPU	CPU	CPU	CPU	CPU	CPU	CPU
Training Resource	CPU	GPU & CPU	GPU	Depends	GPU	CPU	GPU
Training Frequency	Daily	Every N photos	Multi- Monthly	Hourly	Weekly	Sub-Daily	Weekly
Training Duration	Many Hours	Few Seconds	Many Hours	Few Hours	Days	Few Hours	Many Hours

Source: https://research.fb.com/wp-content/uploads/2017/12/hpca-2018-facebook.pdf

INTEL[®] XEON[®] SCALABLE PROCESSORS Scalable performance for widest variety of AI & other datacenter workloads – including deep learning

THE FOUNDATION FOR AI

BUILT-IN ROI

Start your AI journey today using existing, familiar infrastructure

POTENT PERFORMANCE DL training in days HOURS; 198X¹ DL perf on 3 year HW SW refresh

PRODUCTION-READY Robust support for full range of AI deployments

estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown

14X HIGHER INFERENCE PERFORMANCE ON INTEL® XEON® SCALABLE PROCESSORS ON NEURAL MACHINE TRANSLATION

Configuration Details 34.35 Performance measurements were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to our device or system. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations in the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel erformance only on Intel microprocessors. Performance tests may have been optimized for reference using specific computer systems, components, software, performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when complete information visit: http://www.intel.com/performance Source: Intel measured as of May 2018.

DAWNBENCH V1 BENCHMARK RESULTS

BEST INFERENCE RESULTS FROM - DELIVERED IN

'For ImageNet inference, Intel submitted the best result in both cost and latency. Using an Intel optimized version of Caffe on high performance AWS instances, they reduced per image latency to 9.96 milliseconds and processed 10,000 images for \$0.02'

1009 SOR LESS COMPARED TO NVIDIA P100 & K80

DAWNBench

An End-to-End Deep Learning Benchmark and Competition

https://dawn.cs.stanford.edu/ https://arxiv.org/pdf/1705.07538.pdf

MAXIMIZE PERFORMANCE

Through continuous software optimizations to libraries and frameworks

INNOVATE HARDWARE SOLUTIONS

By architecting innovative solutions to improve underlying hardware capabilities for AI

ACCELERATE DEPLOYMENTS

Speed up customer deployments through turnkey solutions for AI applications

ECOSYSTEM ENABLEMENT

Partner with customers & developers on their AI journey to develop end to end solutions from edge to cloud

MAXIMZE PERFORMANCE

(1) Up to 5.4X performance improvement with software optimizations on Caffe Resnet-50 in 10 months with 2 socket Intel® Xeon® Scalable Processor, Configuration Details 1, 14, 15, 41. Performance measurements were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

ents were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system

PLATINUM

inside

since Intel[®] Xeon[®]

Scalable Processor

launch

including the performance of that product when combined with other products.

USE OPTIMIZED MKL-DNN LIBRARY

OPTIMIZED SOFTWARE MKL-DNN LBRARY

2D & 3D Convolution 2D & 3D Inner Product

Pooling

Normalization

Activation:

- ReLU (Training)
- Tanh, Logistic Regression, Softmax (Inference)

Data Manipulation: Reorder, Sum, Concat

OPTIMIZED SOFTWARE : MKL-DNN LIBRARY

Layer Fusion Example

OPTMZEDSOFTWARE MKL-DNN LBRARY Winograd Algorithm to improve matrix multiply performance

Normal Matrix Multiply 6 multiplications

Winograd Matrix Multiply 4 multiplications YO = XO + X1 + X2Y1= X1 - X2 - X3

> X0 = (i0-i2)*F0 X1 = (i1+i2)*(F0+F1+F2)/2 X2 = (i1-i3)*F2 X3 = (i2-i1)*(F0-F1+F2)/2

Compute Operations decreased, memory accesses increased

USE OPTIMIZED MKL-DNN LIBRARY

USE OPTIMIZED FRAMEWORKS

FRAMEWORK OPTIMIZATIONS

Important to use optimized software frameworks and libraries for best AI workload performance

Example: Load Balancing:

TensorFlow graphs offer opportunities for parallel execution. Threading model

- inter_op_parallelism_threads: 1.
- intra_op_parallelism_threads: 2.
- 3. **OMP_NUM_THREADS**:

Max number of operators that can be executed in parallel Max number of threads to use for executing an operator MKL-DNN equivalent of intra op parallelism threads

Efficient memory/cache use

Data reuse

Prefetching

OPTIMIZED FRAMEWORK INSTALLATION

Framework	How to Access Optimize Framework
TensorFlow	Install <u>Intel optimized wheel</u> , see <u>tensorflow.org</u> for CPU optimization instructions
MXNet	Intel optimizations in main branch via experime path, <u>available here</u>
Caffe2	Will upstream to <u>master branch</u> in Q2
PaddlePaddle	Paddle Paddle <u>master branch</u>
PyTorch	Intel optimizations available in this branch
Caffe	Intel optimized version of Caffe
CNTK	Will upstream to <u>master branch</u> in Q2

ed

rg page

nental

INFERENCE **USE OPTIMIZED MKL-DNN LIBRARY USE OPTIMIZED FRAMEWORKS**

ENABLE MULTIPLE STREAMS

MULTIPLE INFERENCE STREAMS

Recommend using multiple framework instances Each framework instance is pinned to a separate NUMA domain Each instance processes a separate Inference Stream

Optimizations at run time <u>without</u> framework code change

Best Known Methods: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/

Inference Stream-4 BS=X

Inference Stream-5 BS=X

Inference Stream-6 BS=X

Inference Stream-7 BS=X

INFERENCE EXAMPLE - MULTI-STREAM FOR TENSORFLOW

For 2S Intel Xeon[®] Platinum 8170 processor-based systems, sub-socket with 8 inference streams:

- common args: "--model resnet50 --batch size 64 --data format NCHW --num batches 100 --distortions=True --mkl=True --num warmup batches 10 -device cpu --data dir ~/tensorflow/TF Records --data name imagenet --display every 10"
- WK HOST= "hostname"
- worker env:"export OMP NUM THREADS=6"
- inf args: "\$common args --num intra threads 6 --num inter threads 2"

To start 4 inference streams on Socket-0:

- ssh \$WK HOST; \$worker env; nohup unbuffer numactl -m 0 python tf_cnn_benchmarks.py --forward_only True \$inf_args -kmp affinity="granularity=thread,proclist=[0-5,52-57],explicit,verbose" &
- ssh \$WK HOST; \$worker env; nohup unbuffer numactl -m 0 python tf cnn benchmarks.py -- forward only True \$inf args -kmp_affinity="granularity=thread,proclist=[6-12,58-64],explicit,verbose" &
- ssh \$WK_HOST; \$worker_env; nohup unbuffer numactl -m 0 python tf cnn benchmarks.py -- forward only True \$inf args -kmp_affinity="granularity=thread,proclist=[13-18,65-70],explicit,verbose" &
- ssh \$WK HOST; \$worker env; nohup unbuffer numactl -m 0 python tf cnn benchmarks.py -- forward only True \$inf args -kmp affinity="granularity=thread,proclist=[19-25,71-77],explicit,verbose" &

To start 4 inference streams on Socket-1:

- ssh \$WK HOST; \$worker env; nohup unbuffer numactl -m 1 python tf cnn benchmarks.py --forward only True \$inf args -kmp affinity="granularity=thread,proclist=[26-31,78-83],explicit,verbose" &
- ssh \$WK HOST; \$worker env; nohup unbuffer numactl -m 1 python tf cnn benchmarks.py -- forward only True \$inf args -kmp affinity="granularity=thread,proclist=[32-38,84-90],explicit,verbose" &
- ssh \$WK HOST; \$worker env; nohup unbuffer numactl -m 1 python tf cnn benchmarks.py -- forward only True \$inf args -kmp_affinity="granularity=thread.proclist=[39-44,91-96],explicit,verbose" &
- ssh \$WK HOST; \$worker env; nohup unbuffer numactl -m 1 python tf cnn benchmarks.py -- forward only True \$inf args -kmp affinity="granularity=thread,proclist=[45-51,96-102],explicit,verbose" &

3X HIGHER INFERENCE PERFORMANCE By USING MKL-DNN LIBRARIES + Optimized Framework

On MxNet Amazon* C5 (Intel® Xeon® Scalable Processor) running NMT¹(German to English) with and without MKL DNN libraries

5V HIGHER INFERENCE PERFORMANCE

BY USING MULTIPLE STREAMS

On MxNet Amazon* C5 (Intel[®] Xeon[®] Scalable Processor) running NMT¹(German to English) with MKL DNN libraries comparing with and without multiple streams

Optimized Intel[®] MKL Libraries

Optimized Frameworks

Multiple Streams

dates intended to address exploits referred to as rs for optimizations that are not unique to Intel ntel. Microprocessor-dependent optimizations in regarding the specific instruction sets covered by ponents, software, operations and functions. Any h other products. For more complete information

INTEL[®] XEON[®] SCALABLE PROCESSORS PERFORMANCE **ON NEURAL MACHINE TRANSLATION**

other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when comb

TRAINING

USE OPTIMIZED MKL-DNN LIBRARY USE OPTIMIZED FRAMEWORKS ENABLE MULTIPLE STREAMS

SCALEOUT TO MULTIPLE NODES

63

TRANNG MULTEWORKERS PERSOCKET

Each framework instance is pinned to a separate NUMA domain Each CPU running 1 or more workers/node Uses optimized MPI library for gradient updates over shared memory Caffe – Use Optimized Intel[®] MPI ML Scaling Library (ML-SL) TensorFlow – Uber horovod MPI Library

Optimizations at run time <u>without</u> framework code change

Intel Best Known Methods: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimiza

Worker-1

Worker-3

SCALEOUT TRAINING: MULT-WORKERS & MULT-NODES

Interconnect Fabric (Intel[®] OPA or Ethernet)

Node 1

Intel Best Known Methods: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations/

Node N

TRAINING EXAMPLE : MULTI WORKER NODE FOR TENSORFLOW

For 4-Node 2S 28 Core Intel Xeon[®] Platinum 8180 processor based cluster with 4 Workers/Node Total of 16 TensorFlow Workers using horovod MPI Communication Library:

OMP_NUM_THREADS=14

To start Distributed Training:

mpiexec --machinefile <hostfile> -genv -np 16 -ppn 4 -genv OMP NUM THREADS \$OMP NUM THREADS \ -genv I MPI PIN DOMAIN 28:compact -genv HOROVOD FUSION THRESHOLD 134217728 python <path>/tf_cnn_benchmarks/tf_cnn_benchmarks.py --batch_size=64 --model=resnet50 \ --num inter threads 2 --num intra threads \$OMP NUM THREADS \ --num batches 100 --display every 10 --data format NCHW --optimizer momentum --device cpu --mkl=true \ --variable_update horovod --horovod_device cpu --local_parameter_device cpu \ --kmp_blocktime=1 --enable_layout_optimizer=TRUE --data_dir=<path-to-TFRecords> \ --data name=<dataset name>

Where hostfile is the file containing the hostnames, one on each new line

EFFICIENT DL SCALING ON EXISTING INFRASTRUCTURE

Configuration Details 10, 28 Performance measurements were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make to your device or system Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction se intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimization regarding the specific instruction sets covered for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. Information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit. http://www.intel.com/performance Source: Intel measured on the performance of that product when combined with other products. For more complete information visit. http://www.intel.com/performance Source: Intel measure

INNOVATE HARDWARE SOLUTIONS

TRAINING ENHANCEMENTS Inte **EMBEDDED ACCELERATION WITH AVX-512** inside AVX-512 Instructions bring embedded acceleration for AI on Intel[®] Xeon[®] Scalable processors

	Sign	Sign Exponent				Mantissa																		
ГР 52	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08

Typical AVX-512 instruction to perform FP32 convolutions: vfmadd231ps

INFERENCE ENHANCEMENTS VECTOR NEURAL NETWORK INSTRUCTIONS Low Precision Instructions bring embedded acceleration for AI on Intel® Xeon® Scalable

INT8

Sign Mantissa 06 05 04 03 02 01 00 07

Current AVX-512 instructions to perform INT8 convolutions: vpmaddubsw, vpmaddwd, vpaddd

Future AVX-512 (VNNI) instruction to accelerate INT8 convolutions: vpdpbusd

** vpmaddubsw, vpmaddwd, vpaddd ->-vpdpbusd

ACCELERATE DEPLOYMENTS

DEPLOYING TENSORFLOW WITH SINGULARITY

- Install Singularity on the Infrastructure Nodes
 - <u>https://singularity.lbl.gov/install-linux</u> as root/sudo
- Build a TensorFlow Singularity Image: tf_singularity.simg
 - Build an image comprising of
 - Linux OS
 - Optimized TensorFlow*
 - Horovod Communication MPI library
 - TensorFlow Application
- Running Application
 - singularity exec tf_singularity.img \

python /<path-to-benchmarks>/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model resnet50 \

--batch_size 64 --data_format NCHW --num_batches 1000 --distortions=True --mkl=True -device cpu \

--num_intra_threads \$OMP_NUM_THREADS --num_inter_threads 2 --kmp_blocktime=0

s.py --model resnet50 \ =True --mkl=True --

ECOSYSTEM ENABLEMENT

AI ECOSYSTEM & RESEARCH ESTABLISH THOUGHT LEADERSHIP, INNOVATE ON INTEL ARCHITECTURE, SYNERGIZE INTEL PRODUCT & RESEARCH

Computational Intelligence

Heterogenous architectures for adaptive and always learning devices with NLP and conversational understanding capabilities and visual applications

Experiential Computing

3D scene understanding using DL based analysis of large video databases, Computer Vision in the cloud – enable effective data mining of large collections of Video

Approximate Computing

audio-visual multi-modal Always-on interaction, Self configuring audio-visual hierarchical sensing through approximate computing data path

Deep Learning Architecture

Deep Learning hardware and software advancements, scaling to very large clusters and new applications

Visual Cloud Systems

Large-scale systems research for scaling out visual applications and data, large-scale video analysis

Security in **Deep Learning**

Built-in safety mechanisms for wide spread mission critical use, ascertaining the confidence and removing anomalous and out of distribution samples in autonomous driving, medicine, security

Intel Invests Billion

in the AI Ecosystem to Fuel Adoption and Product Innovation⁽¹⁾

University engagements

Brain Science

Create an instrument to connect human behavior to brain function, toolkits for the analysis of brain function, Real-time cloud services for neuroimaging analysis Applying neuroscientific insights to AI

ADVANCING AI PERFORMANCE WITH INTEL® XEON® SCALABLE

TIME TO SOLUTION FOR PRODUCTION AI

WORKLOAD FLEXIBILITY & SCALABILITY

URNEY TO **PRODUCTION AI**

P LEARNING IN **ATA CENTERS**

MAXIMIZE PERFORMANCE **USE OPTIMIZED SW**

INTEL AI FOCUS

ADVANCING AI PERFORMANCE WITH INTEL® XEON® SCALABLE

TIME TO SOLUTION IS KEY FOR Production AI

builders.intel.com/ai/solutionslibrary

MAXIMIZE PERFORMANCE WITH OPTIMIZED SW

software.intel.com/en-us/aiacademy

ENGAGE, CONTRIBUTE & DEVELOP AI ON IA

builders.intel.com/ai/devcloud

NOTICES & DISCLAIMERS

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer. No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel, the Intel logo, Pentium, Celeron, Atom, Core, Xeon, Movidius, Saffron and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

© 2018 Intel Corporation.

OPTIMIZED LIBRARIES

Library	Commercial Product Version
Intel® Math Kernel Library for Deep Neural Networks (Intel® MKL-DNN)	
Intel [®] Math Kernel Library (Intel [®] MKL)	Intel MKL Product site
Intel [®] Data Analytics Acceleration Library (Intel [®] DAAL)	Intel DAAL Product Site
Intel [®] Integrated Performance Primitives (Intel [®] IPP)	Intel IPP Product Site

Opens source version <u>MKL-DNN Github</u>

Intel DAAL Github

OPTIMIZED FRAMEWORKS

Framework	How to Access Optimized Framework
TensorFlow	Install <u>Intel optimized wheel</u> , see <u>tensorflow.org page</u> for CPU optimization instructions
MXNet	Intel optimizations in main branch via experimental path, <u>available here</u>
Caffe2	Will upstream to <u>master branch</u> in Q2
PaddlePaddle	Paddle Paddle <u>master branch</u>
PyTorch	Intel optimizations available in <u>this branch</u>
Caffe	Intel optimized version of Caffe
CNTK	CNTK <u>master branch</u>

Configuration Details 1

Benchmark Segment	AI/ML
Benchmark type	Training/Inference
Benchmark Metric	Images/Sec or Time to train in seconds
Framework	Caffe
Topology	
# of Nodes	1
Platform	Purley
Sockets	2S
Processor	Xeon Platinum, 205W, 28 core, 2.5 GHz
BIOS	SE5C620.86B.01.00.0470.040720170855
Enabled Cores	28
Platform	
Slots	12
Total Memory	192GB (96 GB per socket)
Memory Configuration	6 slots/16 GB/2666 Mt/s DDR4 RDIMMs
Memory Comments	Micron (18ASF2G72PDZ-2G6D1)
SSD	INTEL SSDSC2KW48 480 GB
OS	RHEL Server Release 7.2 (Maipo), Linux kernel 3.10.0-327.el7.x86_64
OS\Kernel Comments	
Other Configurations	
HT	ON
Turbo	ON
Computer Type	Server
Framework Version	http://github.com/intel/caffe/ c7ed32772affaf1d9951e2a93d986d22a8d14b88 (release_1.0.6)
Topology Version, BATCHSIZE	best (resnet 50, gnet_v3 224, ssd 224)
Dataset, version	ImageNet / DummyData layer
Performance command	Inference measured with "caffe timeforward_only -phase TEST" command, training measured with "caffe train" com
Data setup	DummyData layer (generating dummy images on the fly)
Compiler	Intel C++ compiler ver. 17.0.5 20171101
MKL Library version	Intel MKL small libraries version 2018.0.1.20171007
MKL DNN Library Version	-
Performance Measurement Knobs	Environment variables: KMP_AFFINITY='granularity=fine, compact,1,0', OMP_NUM_THREADS=28, CPU Freq set with cp
Memory knobs	Caffe run with "numactl -l".

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

ommand.

cpupower frequency-set -d 2.5G -u 3.8G -g performance

Skylake AI Configuration Details as of July 11th, 2017

Platform: 2S Intel[®] Xeon[®] Platinum 8180 CPU @ 2.50GHz (28 cores), HT disabled, turbo disabled, scaling governor set to "performance" via intel_pstate driver, 384GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series (800GB, 2.5in SATA 6Gb/s, 25nm, MLC).

Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact', OMP_NUM_THREADS=56, CPU Freq set with cpupower frequency-set -d 2.5G -u 3.8G -g performance

Deep Learning Frameworks:

- Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with "caffe time --forward only" command, training measured with "caffe time" command. For "ConvNet" topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnetbenchmarks/tree/master/caffe/imagenet winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). Intel C++ compiler ver. 17.0.2 20170213, Intel MKL small libraries version 2018.0.20170425. Caffe run with "numactl -l".
- TensorFlow: (https://github.com/tensorflow/tensorflow), commit id 207203253b6f8ea5e938a512798429f91d5b4e7e. Performance numbers were obtained for three convnet benchmarks: alexnet, googlenetv1, vgg(https://github.com/soumith/convnet-benchmarks/tree/master/tensorflow) using dummy data. GCC 4.8.5, Intel MKL small libraries version 2018.0.20170425, interop parallelism threads set to 1 for alexnet, vgg benchmarks, 2 for googlenet benchmarks, intra op parallelism threads set to 56, data format used is NCHW, KMP BLOCKTIME set to 1 for googlenet and vgg benchmarks, 30 for the alexnet benchmark. Inference measured with --caffe time -forward only -engine MKL2017 option, training measured with --forward backward only option.
- MxNet: (https://github.com/dmlc/mxnet/), revision 5efd91a71f36fea483e882b0358c8d46b5a7aa20. Dummy data was used. Inference was measured with "benchmark score.py", training was measured with a modified version of benchmark score.py which also runs backward propagation. Topology specs from https://github.com/dmlc/mxnet/tree/master/example/image-classification/symbols. GCC 4.8.5, Intel MKL small libraries version 2018.0.20170425.
- ZP/MKL CHWN branch commit id:52bd02acb947a2adabb8a227166a7da5d9123b6d. Dummy data was used. The main.py script was used for benchmarking, in mkl mode. ICC version used : 17.0.3 20170404, Intel MKL small libraries version 2018.0.20170425.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Config 14

Broadwell AI Configuration Details as of July 11th, 2017

Platform: 2S Intel[®] Xeon[®] CPU E5-2699 v4 @ 2.20GHz (22 cores), HT enabled, turbo disabled, scaling governor set to "performance" via acpi-cpufreg driver, 256GB DDR4-2133 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3500 Series (480GB, 2.5in SATA 6Gb/s, 20nm, MLC).

Performance measured with: Environment variables: KMP_AFFINITY='granularity=fine, compact, 1,0', OMP_NUM_THREADS=44, CPU Freq set with cpupower frequency-set -d 2.2G -u 2.2G -g performance

Deep Learning Frameworks:

- Caffe: (http://github.com/intel/caffe/), revision f96b759f71b2281835f690af267158b82b150b5c. Inference measured with "caffe time --forward only" command, training measured with "caffe time" command. For "ConvNet" topologies, dummy dataset was used. For other topologies, data was stored on local storage and cached in memory before training. Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (GoogLeNet, AlexNet, and ResNet-50), https://github.com/intel/caffe/tree/master/models/default_vgg_19 (VGG-19), and https://github.com/soumith/convnetbenchmarks/tree/master/caffe/imagenet winners (ConvNet benchmarks; files were updated to use newer Caffe prototxt format but are functionally equivalent). GCC 4.8.5, Intel MKL small libraries version 2017.0.2.20170110.
- TensorFlow: (https://github.com/tensorflow/tensorflow), commit id 207203253b6f8ea5e938a512798429f91d5b4e7e. Performance numbers were obtained for three convnet benchmarks: alexnet, googlenetv1, vgg(https://github.com/soumith/convnet-benchmarks/tree/master/tensorflow) using dummy data. GCC 4.8.5, Intel MKL small libraries version 2018.0.20170425, interop parallelism threads set to 1 for alexnet, vgg benchmarks, 2 for googlenet benchmarks, intra op parallelism threads set to 44, data format used is NCHW, KMP_BLOCKTIME set to 1 for googlenet and vgg benchmarks, 30 for the alexnet benchmark. Inference measured with --caffe time -forward only -engine MKL2017 option, training measured with --forward backward only option.
- MxNet: (https://github.com/dmlc/mxnet/), revision e9f281a27584cdb78db8ce6b66e648b3dbc10d37. Dummy data was used. Inference was measured with "benchmark score.py", training was measured with a modified version of benchmark score.py which also runs backward propagation. Topology specs from https://github.com/dmlc/mxnet/tree/master/example/image-classification/symbols. GCC 4.8.5, Intel MKL small libraries version 2017.0.2.20170110.
- ZP/MKL CHWN branch commit id:52bd02acb947a2adabb8a227166a7da5d9123b6d. Dummy data was used. The main.py script was used for benchmarking, in mkl mode. ICC version used : 17.0.3 20170404, Intel MKL small libraries version 2018.0.20170425.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Config 15

Configuration Details May8th 2018

Benchmark Segment	AI/ML	
Benchmark type	Training/Infere	nce
Benchmark Metric	Images/Sec or	Time to train in seconds
Framework	Caffe	
Topology		
# of Nodes	1	
Platform	Purley	
Sockets	2S	
Processor	Xeon Platinum,	, 205W, 28 core, 2.5 GHz
BIOS	SE5C620.86B.0	1.00.0470.040720170855
Enabled Cores	28	
Platform		
Slots	12	
Total Memory	192GB (96 GB j	
Memory Configuration	6 slots/16 GB/2	2666 Mt/s DDR4 RDIMMs
Memory Comments	Micron (18ASF2	2G72PDZ-2G6D1)
SSD	INTEL SSDSC2K	W48 480 GB
OS	RHEL Server Re	elease 7.2 (Maipo), Linux kernel 3.10.0-327.el7.x86_64
OS\Kernel Comments		
Other Configurations		
HT	ON	
Turbo	ON	
Computer Type	Server	
Topology Version, BATCHSIZE	best (resnet !	50, gnet_v3 224, ssd 224)
Dataset, version	ImageNet / Du	mmyData layer
Performance command	Inference meas	sured with "caffe timeforward_only -phase TEST" command, training measured with "caffe train" comm
Data setup	DummyData la	yer (generating dummy images on the fly)
Compiler	Intel C++ comp	iler ver. 17.0.5 20171101
Performance Measurement Knobs	Environment va	ariables: KMP_AFFINITY='granularity=fine, compact,1,0′, OMP_NUM_THREADS=28, CPU Freq set with cpu
Memory knobs	Caffe run with	"numactl -l".
caffe branch: origin/master version: a3d5b022fe026e9092fc7abc7654b1162ab9940d		MKLDNN version: 464c268e544bae26f9b85a2acb9122c766a4c396

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Config 41

nmand.

cpupower frequency-set -d 2.5G -u 3.8G -g performance

CONFIGURATION DETAILS OF AMAZON EC2 C5.18XLARGE 1 NODE SYSTEMS

Benchmark Segment	AI/ML
Benchmark type	Inference
Benchmark Metric	Sentence/Sec
Framework	Official mxnet
Тороlоду	GNMT(sockeye)
# of Nodes	1
Platform	Amazon EC2 C5.18xlarge instance
Sockets	25
Processor	Intel® Xeon® Platinum 8124M CPU @ 3.00GHz (Skylake)
BIOS	N/A
Enabled Cores	18 cores / socket
Platform	N/A
Slots	N/A
Total Memory	144GB
Memory Configuration	N/A
SSD	EBS Optimized 200GB, Provisioned IOPS SSD
OS	Red Hat 7.2 (HVM) Amazon Elastic Network Adapter (ENA) Up to 10 Gbps of aggregate network b
Network Configurations	Installed Enhanced Networking with ENA on Centos Placed the all instances in the same placeme
нт	ON
Turbo	ON
Computer Type	Server

Config 34

bandwidth

nent

Configuration details of Amazon EC2 C5.18xlarge 1 node systems

Framework Version	<pre>mxnet mkldnn : <u>https://github.com/apache/incubator-mxnet/</u> 4950f6649e329b23a1efdc40aaa25260d47b4195</pre>
Topology Version	GNMT: https://github.com/awslabs/sockeye/tree/master/tutorials/wmt
Batch size	GNMT:1 2 8 16 32 64 128
Dataset, version	GNMT: WMT 2017 (<u>http://data.statmt.org/wmt17/translation-task/preprocessed/</u>)
MKLDNN	F5218ff4fd2d16d13aada2e632afd18f2514fee3
MKL	Version: parallel_studio_xe_2018_update1 http://registrationcenterdownload.intel.com/akdlm/irc_nas/tec/12374/parallel_stud el_cluster_edition_online.tgz
Compiler	g++: 4.8.5 gcc: 7.2.1

<u>lio_xe_2018_updat</u>

Dawnbench Configurations

EC2 Instance type	Machine Type	vCPU (#s)	Memory (GiB)	Disk(GB)	Storage (mbps, EBS bandwidth)
C5.2xlarge	SKX 8124M 4 cores 3 GHz base frequency	8	16	128	Up to 2,250
C5.4xlarge	SKX 8124M 8 cores 3 GHz base frequency	16	32	128	2,250
C5.18xlarge	SKX 8124M 2S x 18 cores 3 GHz base frequency	72	144	128	9,000

Ethernet (Gigabit)	Price (\$ per Hour)
Up to 10	0.34
Up to 10	0.68
25	3.06

Dawnbench IntelCaffe Inference topology

Inference: INT8 Resnet50 with 15% pruning, 53% performance gain over FP32

- Based on 93.3% accuracy FP32 Resnet50 topology
- Pure INT8 except for first convolution layer: <0.2% accuracy drop, 43% performance gain over FP32
- 15% filter pruned according to KL distance: <0.1% accuracy drop, 15% performance gain over FP32</p>

Intel[®] and SURFsara* Research Collaboration MareNostrum4/BSC* Configuration Details

*MareNostrum4/Barcelona Supercomputing Center: https://www.bsc.es/

Compute Nodes: 2 sockets Intel[®] Xeon[®] Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores per node, 2 Threads per core, L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K, 96 GB of DDR4, Intel[®] Omni-Path Host Fabric Interface, dual-rail. Software: Intel[®] MPI Library 2017 Update 4Intel[®] MPI Library 2019 Technical Preview OFI 1.5.0PSM2 w/ Multi-EP, 10 Gbit Ethernet, 200 GB local SSD, Red Hat* Enterprise Linux 6.7.

Intel[®] Caffe: Intel[®] version of Caffe; http://github.com/intel/caffe/, revision 8012927bf2bf70231cbc7ff55de0b1bc11de4a69. Intel[®] MKL version: mklml lnx 2018.0.20170425; Intel[®] MLSL version: l mlsl 2017.1.016

Model: Topology specs from https://github.com/intel/caffe/tree/master/models/intel_optimized_models (ResNet-50) and modified for wide-RedNet-50. Batch size as stated in the performance chart

Time-To-Train: measured using "train" command. Data copied to memory on all nodes in the cluster before training. No input image data transferred over the fabric while training;

Performance measured with:

export OMP_NUM_THREADS=44 (the remaining 4 cores are used for driving communication), export 1_MPI_FABRICS=tmi, export 1_MPI_TMI_PROVIDER=psm2

OMP_NUM_THREADS=44 KMP_AFFINITY="proclist=[0-87],granularity=thread,explicit" KMP_HW_SUBSET=1t MLSL_NUM_SERVERS=4 mpiexec.hydra -PSM2 -l -n \$SLURM_JOB_NUM_NODES -ppn 1 -f hosts2 -genv OMP_NUM_THREADS 44 -env KMP_AFFINITY "proclist=[0-87],granularity=thread,explicit" -env KMP_HW_SUBSET 1t -genv I_MPI_FABRICS tmi -genv I_MPI_HYDRA_BRANCH_COUNT \$SLURM_JOB_NUM_NODES -genv I_MPI_HYDRA_PMI_CONNECT alltoall sh -c 'cat /ilsvrc12_train_lmdb_striped_64/data.mdb > /dev/null ; cat /ilsvrc12_val_lmdb_striped_64/data.mdb > /dev/null ; ulimit -u 8192 ; ulimit -a ; numactl -H ; /caffe/build/tools/caffe train --solver=/caffe/models/intel_optimized_models/multinode/resnet_50_256_nodes_8k_batch/solver_poly_quick_large.prototxt -engine "MKL2017"

SURFsara blog: https://blog.surf.nl/en/imagenet-1k-training-on-intel-xeon-phi-in-less-than-40-minutes/; Researchers: Valeriu Codreanu, Ph.D. (PI).; Damian Podareanu, MSc; SURFsara* & Vikram Saletore, Ph.D. (co-PI): Intel Corp.

*SURFsara B.V. is the Dutch national high-performance computing and e-Science support center. Amsterdam Science Park, Amsterdam, The Netherlands.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Config 10

Stampede2*/TACC* Configuration Details

***Stampede2/TACC**: https://portal.tacc.utexas.edu/user-guides/stampede2

Compute Nodes: 2 sockets Intel[®] Xeon[®] Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores per node, 2 Threads per core, L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K, 96 GB of DDR4, Intel[®] Omni-Path Host Fabric Interface, dual-rail. Software: Intel[®] MPI Library 2017 Update 4Intel[®] MPI Library 2019 Technical Preview OFI 1.5.0PSM2 w/ Multi-EP, 10 Gbit Ethernet, 200 GB local SSD, Red Hat* Enterprise Linux 6.7.

TensorFlow*: http://github.com/intel/caffe/, revision 8012927bf2bf70231cbc7ff55de0b1bc11de4a69. Intel[®] MKL version: mklml lnx 2018.0.20170425; Intel[®] MLSL version: l mlsl 2017.1.016

Model: Topology specs from https://github.com/intel/caffe/tree/master/models/intel optimized models (ResNet-50) and modified for wide-RedNet-50.; Batch size as stated in the performance chart

Performance measured with:

export OMP_NUM_THREADS=10 Per Worker (the remaining 2 cores are used for driving communication), export 1_MPI_FABRICS=tmi, export I MPI TMI PROVIDER=psm2

OMP_NUM_THREADS=10 KMP_AFFINITY="proclist=[0-63],granularity=thread,explicit" KMP_HW_SUBSET=1t MLSL_NUM_SERVERS=4 mpiexec.hydra -PSM2 -L -n \$SLURM_JOB_NUM_NODES -ppn 1 -f hosts2 -genv OMP_NUM_THREADS 64 -env KMP_AFFINITY "proclist=[0-63],granularity=thread,explicit" -env KMP_HW_SUBSET 1t -genv L_MPI_FABRICS tmi -genvT_MPI_HYDRA_BRANCH_COUNT \$SLURM_JOB_NUM_NODES -genv L_MPI_HYDRA_PMI_CONNECT alltoall sh -c 'cat /ilsvrc12_train_lmdb_striped_64/data.mdb > /dev/null ; cat /ilsvrc12_val_lmdb_striped_64/data.mdb > /dev/null ; ulimit -u 8192 ; ulimit -a ; numactl -H ; /caffe/build/tools/caffe train -solver=/caffe/models/intel_optimized_models/multinode/resnet_50 256_nodes_8k_batch/solver_poly_quick_large.prototxt -engine "MKL2017"

Configuration Details on Slide: VLAB at Intel® Configuration Details: Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance. Copyright © 2017, Intel Corporation

Case Study: Time-series Pattern Detection Leading U.S. Market Exchange

RESULT 10X REDUCTION

In data storage and search complexity costs, with more accurate matches than non-deep learning approach

Client: Leading U.S. market exchange

Challenge: Identify known patterns or anomalies in market trading data in order to predict investment activity, such as fraudulent activity or spikes in trading volume and whether any action is required.

Solution: Using Intel® Nervana[™] Cloud and Neon framework. Built a recurrent neural network (RNN)-based model, utilizing encoders and decoders, in order to ingest public order book data and automatically learn informative patterns of activity in the historical data. Time series analysis enables new use cases for fraud detection, anomaly detection, and other future applications

PROOF OF CONCEPT: IMAGE RECOGNITION SEISMC REFLECTION ANALYSIS

• Client:

- A leading developer of software solutions to the global oil and gas industry.
- Challenge:
 - Automate identification of fault lines within seismic reflection data.
- Solution:
 - Built a proof of concept that is trained using seismic reflection data and can predict the probability of finding fault lines on previously unseen images.
 - Performs pixel-wise semantic segmentation of SEG-Y formatted data
 - Model trained using supervised learning
- Advantages:
 - Automation enables analysis of vast amounts of data faster
 - Could identify potentially rewarding locations from subtle clues in the data

CASE STUDY: ENTERPRISE ANALYTICS SERPRO*

RESULT DBLL Streamlined colle

Client: SERPRO, Brazil's largest governmentowned IT services corporation, providing technology services to multiple public sector agencies. **Challenge:** Across Brazil, 35,000 traffic enforcement cameras document 45 million violations every year, generating US \$1 billion in revenue. Fully automating the complex, labor-intensive process for issuing tickets by integrating image recognition via AI could reduce costs and processing time. **Solution:** Used deep learning techniques to optimize SERPRO's code. With Brazilian student-partners, developed new algorithms, training and inference tests using Google TensorFlow* on Dell EMC PowerEdge R740*, running on Intel® Xeon® Scalable processor-based platforms.

*Other names and brands may be claimed as the property of others.

Streamlined collection of US \$1 billion in revenue by designing new APIs for car and license plate image recognition.

