
Efficient Implementation of Neural
Network Systems Built on FPGAs,
and Programmed with OpenCLTM

OpenCL Efficient Neural Networks

Deep learning neural network systems currently provide the best solution to many
large computing problems for image recognition and natural language processing.
Neural networks are inspired by biological systems, in particular the human brain;
they use conventional processing to mimic the neural network and create a system
that can learn by observing. While large strides have recently been made in the
development of high-performance systems for neural networks based on
multi-core technology, significant challenges in power, cost, and performance
scaling remain.

The most widely used deep learning systems are convolutional neural networks
(CNNs). These systems use a feed forward artificial network of neurons to
execute image identification or recognition. They use a reverse feed system for
learning, and produce a set of weights to calibrate the execution system. CNNs are
composed of layers. These layers include a convolution layer that extracts
low-level features from the input to identify lines or edges within an image.

The pooling layers reduce variations with maxing or value averaging, pooling
common features over a particular region of an image. The result can be passed
on to further convolutions and pooling layers. The number of CNN layers
correlates to the accuracy of the image recognition; more layers require more
system performance. These layers can operate independently; therefore, they are
implemented most efficiently in a data pipeline where data is passed from one
layer to another. Multi-core processing systems use external memory to buffer
the data between each layer, which requires significant amounts of memory
bandwidth.

By far the most performance intense functionality in the neural network are the
convolutions themselves. These complex sigmoidal functions are typically best
implemented in single-precision floating-point math for image classification.
Conventional processor cores must execute a large set of instructions for each
convolution, which requires significant processing bandwidth.

The Context

Figure 1. 2D Convolution Layer

Inew [x][y] = Iold [x+x’] [y+y’]
1

x’=-1

1

y’=-1

There are two main challenges to achieve efficient implementation of CNNs. The
first is the ability to execute functions in a pipeline, passing data from one layer to
the next. The second is to execute the convolution functions efficiently.
Additionally, these functions should be constructed with a methodology that
allows easy reprogramming for different types of hardware and for porting to
future advanced hardware, otherwise, each new implementation requires extensive
re-optimization.

Solution brief

Solution Brief | Efficient Neural Networks

The Design
Field-programmable gate arrays (FPGAs) are a natural
choice for implementing neural networks because they can
combine computing, logic, and memory resources in a single
device. However, FPGAs have been impractical for wide
spread use in complex algorithmic-based systems due to the
traditional low-level hardware programming environments.
Intel® FPGA SDK for OpenCL™ solves this problem, making
FPGAs useful for a wide array of acceleration applications
using complex algorithms. Software developers can use the
OpenCL C level programming standard to target FPGAs as
accelerators to standard CPUs without having to deal with
hardware level design. Additionally, Intel has developed
a scalable convolutional neural network reference design
for deep learning systems using the OpenCL programming
language built with our SDK for OpenCL. This design was
first implemented on the Stratix® V device series, and is now
available for Arria® 10 devices. The design performance is
being benchmarked using two popular CNN benchmarks:
CIFAR-10 and ImageNet.

The design uses OpenCL kernels to implement each CNN
layer. Data is passed from one layer to the next through a
mechanism called OpenCL Channels or Pipes, which allow
data to move from one kernel to the next without sending
data to the external memory. This FPGA implementation is
a data buffer that uses the internal memory structures next
to the kernel itself, resulting in very efficient data movement
through the neural network. In addition, the design can be
adapted to systems that use cameras, sensors, or other input
and output devices directly attached to the FPGA. The CNN
system can interface directly with these devices through
the same channel mechanism without the data going to the
external memory. A typical GPU implementation batches
images and requires significant external memory bandwidth.
In contrast, the FPGA can process one image at a time with
significantly greater data reuse on chip and less external
memory bandwidth.

Figure 2. Neural Network Datapath

FPGA

IO Channels

Kernel
Channels/Pipes

Kernel 1 Kernel 2 Kernel 3

The convolutions are implemented using DSP blocks and
logic in the FPGA. In the past, FPGA DSP blocks were efficient
for multiplication, however, floating-point addition required
significant FPGA logic. Arria 10 and Stratix 10 FPGAs have
innovative DSP blocks that also deliver IEEE-754
floating-point addition, which results in less FPGA logic
and higher clock speeds for better performance and lower
power. At the 2015 Intel Developers Forum, Intel presented
the Arria 10 AlexNet estimates shown below. A week later, a
Microsoft* white paper at the Hot Chips Conference projected
similar performance efficiency versus peak TFLOPs for Arria
10 GX1150 compared to the Titan X GPU, but with 2X better
performance to power ratio. Stratix 10 FPGAs are expected
to deliver over 5X better performance compared to Arria 10
FPGAs with more than 3X the DSP blocks at ~2X the clock
speed, providing continued improvement in performance to
power.

Note:
1. 	For more complete information about performance and benchmark results, visit
	 www.intel.com/benchmarks.
2. 	If the CPU is active with other tasks while the two FPGAs are used, use 65 W instead
	 of 130 W.

PROJECTED ALEXNET PERFORMANCE AND POWER1

CNN CLASSIFICATION
PLATFORM

POWER
(W)

PERFORMANCE
(IMAGE/S)

EFFICIENCY
(IMAGES/SEC/W)

E52699 Dual Xeon® CPU
(18 core per Xeon) 321 1,320 4.11

PCle* w/Dual Arria 10 1150 1302 1,200 9.27

1 Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

©2016 Intel Corporation. Intel, the Intel logo, Altera, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Intel Corporation or its
subsidiaries in the U.S. and/or other countries. Other marks and brands may be claimed as the property of others.
* Other marks and brands may be claimed as the property of others. SS-1078-1.2

2

