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Deep learning neural network systems currently provide the best solution to many 
large computing problems for image recognition and natural language processing. 
Neural networks are inspired by biological systems, in particular the human brain; 
they use conventional processing to mimic the neural network and create a system 
that can learn by observing. While large strides have recently been made in the  
development of high-performance systems for neural networks based on  
multi-core technology, significant challenges in power, cost, and performance  
scaling remain.

The most widely used deep learning systems are convolutional neural networks 
(CNNs). These systems use a feed forward artificial network of neurons to 
execute image identification or recognition. They use a reverse feed system for 
learning, and produce a set of weights to calibrate the execution system. CNNs are 
composed of layers. These layers include a convolution layer that extracts 
low-level features from the input to identify lines or edges within an image.

The pooling layers reduce variations with maxing or value averaging, pooling 
common features over a particular region of an image. The result can be passed 
on to further convolutions and pooling layers. The number of CNN layers 
correlates to the accuracy of the image recognition; more layers require more 
system performance. These layers can operate independently; therefore, they are 
implemented most efficiently in a data pipeline where data is passed from one 
layer to another. Multi-core processing systems use external memory to buffer 
the data between each layer, which requires significant amounts of memory 
bandwidth.

By far the most performance intense functionality in the neural network are the 
convolutions themselves. These complex sigmoidal functions are typically best 
implemented in single-precision floating-point math for image classification.  
Conventional processor cores must execute a large set of instructions for each 
convolution, which requires significant processing bandwidth.

The Context

Figure 1. 2D Convolution Layer
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There are two main challenges to achieve efficient implementation of CNNs. The 
first is the ability to execute functions in a pipeline, passing data from one layer to 
the next. The second is to execute the convolution functions efficiently.  
Additionally, these functions should be constructed with a methodology that  
allows easy reprogramming for different types of hardware and for porting to 
future advanced hardware, otherwise, each new implementation requires extensive 
re-optimization.
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The Design
Field-programmable gate arrays (FPGAs) are a natural 
choice for implementing neural networks because they can 
combine computing, logic, and memory resources in a single 
device. However, FPGAs have been impractical for wide 
spread use in complex algorithmic-based systems due to the 
traditional low-level hardware programming environments. 
Intel® FPGA SDK for OpenCL™ solves this problem, making 
FPGAs useful for a wide array of acceleration applications 
using complex algorithms. Software developers can use the 
OpenCL C level programming standard to target FPGAs as 
accelerators to standard CPUs without having to deal with 
hardware level design. Additionally, Intel has developed 
a scalable convolutional neural network reference design 
for deep learning systems using the OpenCL programming 
language built with our SDK for OpenCL. This design was 
first implemented on the Stratix® V device series, and is now 
available for Arria® 10 devices. The design performance is 
being benchmarked using two popular CNN benchmarks: 
CIFAR-10 and ImageNet.

The design uses OpenCL kernels to implement each CNN 
layer. Data is passed from one layer to the next through a 
mechanism called OpenCL Channels or Pipes, which allow 
data to move from one kernel to the next without sending 
data to the external memory. This FPGA implementation is 
a data buffer that uses the internal memory structures next 
to the kernel itself, resulting in very efficient data movement 
through the neural network. In addition, the design can be 
adapted to systems that use cameras, sensors, or other input 
and output devices directly attached to the FPGA. The CNN 
system can interface directly with these devices through 
the same channel mechanism without the data going to the 
external memory. A typical GPU implementation batches 
images and requires significant external memory bandwidth. 
In contrast, the FPGA can process one image at a time with 
significantly greater data reuse on chip and less external 
memory bandwidth.

Figure 2. Neural Network Datapath
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The convolutions are implemented using DSP blocks and 
logic in the FPGA. In the past, FPGA DSP blocks were efficient 
for multiplication, however, floating-point addition required 
significant FPGA logic. Arria 10 and Stratix 10 FPGAs have 
innovative DSP blocks that also deliver IEEE-754 
floating-point addition, which results in less FPGA logic 
and higher clock speeds for better performance and lower 
power. At the 2015 Intel Developers Forum, Intel presented 
the Arria 10 AlexNet estimates shown below. A week later, a 
Microsoft* white paper at the Hot Chips Conference projected 
similar performance efficiency versus peak TFLOPs for Arria 
10 GX1150 compared to the Titan X GPU, but with 2X better 
performance to power ratio. Stratix 10 FPGAs are expected 
to deliver over 5X better performance compared to Arria 10 
FPGAs with more than 3X the DSP blocks at ~2X the clock 
speed, providing continued improvement in performance to 
power.

Note:
1. 	For more complete information about performance and benchmark results, visit  
	 www.intel.com/benchmarks.
2. 	If the CPU is active with other tasks while the two FPGAs are used, use 65 W instead 
	 of 130 W.

PROJECTED ALEXNET PERFORMANCE AND POWER1

CNN CLASSIFICATION 
PLATFORM

POWER
(W)

PERFORMANCE
(IMAGE/S)

EFFICIENCY
(IMAGES/SEC/W)

E52699 Dual Xeon® CPU
(18 core per Xeon) 321 1,320 4.11

PCle* w/Dual Arria 10 1150 1302 1,200 9.27

1 Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of 
information to evaluate performance as you consider your purchase.  For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. 
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