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Examples of Engineering Use

« NVIDIA V100 GPU improves aver Intel Xeon Skylake CPU by 4-5x
» NVIDIA A100 GPU improves to 7-8x

+ GPUs typically bundled in nodes with 4, 6, or 8 GPUs

« GPU nodes are more expensive, but still a win on performance/ $
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Recent Summit Campaigns

=  Summit Early Science, INCITE campaigns for simulations of 16-meter diameter
human-scale Mars lander with O,/CH. combustion in Martian CO, atmosphere Temperature

« DES of 10 species/19 reactions, 7B elements, seconds of real time
* Runs on 15,912 V100s with approximate throughput of several million CPU cores

« Big data: 90 GB of asynchronous /O every 30 seconds for 2 days yields ~1 PB
per run; 60 TB/day migrated from ORNL to NASA Ames

« Stepping stone to CFD 2030 exascale milestones




FUN3D Test Problem

Transonic turbulent flow over a semi-span wingbody
consisting of 1,123,718 grid vertices, 1,172,171
prisms, 3,039,656 tetrahedra, and 7,337 pyramids.

The off-diagonal matrix consists of 19,106,474
blocks.

15 iterations of the linear solver are timed.



Multicolor Point-Implicit Solver

fori=1ton time steps
do
Form Right Hand Side
Form Left Hand Side

« FUNBS3D solves the Navier-Stokes equations
of fluid dynamics using implicit time integration
on general unstructured grids

Solve AAQ =R
« This approach gives rise to a large block-sparse Update Solution
system of linear equations that must be solved at ~ end for

each time step

« Multicolor point-implicit linear solver used to solve A AQ =R



Multicolor Point-Implicit Solver: Basics

* Implicit scheme results in linear systems of equations:

o AAQ =R, Ais asparse nxn block matrix
o Typically 14-19 blocks per row
o block is of size nbxnb (typically, nb = 3)

* Matrix A is segregated into two separate matrices:
o A= 0+ D, where O and D represent the off-diagonal and diagonal blocks of A
o D is always stored in double precision (FP64)
o 0 is typically stored in single precision (FP32), option for half-precision (FP16)

* Prior to performing each linear solve, each diagonal block D is decomposed
In-place into lower and upper triangular matrices



Multicolor Point-Implicit Solver

Uses a series of multicolor point-implicit sweeps to form an approximate solution to A AQ =R

« Color by rows which share no adjacent unknowns; re-order rows by color contiguously

+ Unknowns of the same color carry no data dependency and may be updated in parallel

+ Updates of unknowns for each color use the latest updated values for other colors

« The overall process may be repeated using several outer sweeps over the entire system

2 29 Algorithm 1 MULTICOLOR LINEAR SOLVER

12 14 18 9 I: AQ =1
e ? 32 o 2 for i+ 11to nyer do

o 3 T 16 " 1o ¢ 3 for e «— 1 to n. do
T A L [ 4 Ar - Re — 0.4Q

R R i 5: AQ. «— D A
e 30 ; 3311 35 f: end for
R 19 .2 % 7: end for




Matrix Storage and Performance Issues

o The dominant computation in the block-sparse linear solver is a block-sparse
matrix-vector operation with a typical block size of 5 X 5

o Memory bound computation so it is critical to utilize the memory bandwidth
effectively

o The matrix is stored in a block CSR format, where the non-zero blocks in a row are
stored contiguously in the memory

o A block is stored in a column-major order

seses seees Matrix view

seoo eee ¢ see o Layout in memory



Naive Implementation on NVIDIA V100

Memory access pattern for the Block Sparse Matrix Vector Operation

naive implementation results in

very poor utilization of memory —— - e —

bandwidth. R FHR It
Consecutive threads are [ T P

accessing memory locations that MeaH " ee s Praes =
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not consecutive.

V100: ~500ms ~70GB/s

%Peak: 7.7%  TP:900 GB/s




Optimization Issues for Multicolor Linear Solver

s RiEad Matrix view
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Ensure requests are for data that is
stored in consecutive locations

The size of request (# of data
elements) depends on the hardware

GPU Memory
Subsystem




Optimization Issues on GPU

o GPU supports Single Instruction Multiple Thread (SIMT) model with a
group of threads referred to as warp (or wavefront)

o The dimension of this thread group can vary from one GPU to another,
and the group must process consecutive memory locations to achieve
coalesced memory accesses

o This requires mapping the warp (or wavefront) to one or more blocks
of a sparse matrix and restructuring the computation accordingly



Block Sparse Matrix Vector-FUN3D (CUDA)

Thread #0 of warp +——p Map a warp to a 5x5 block
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Challenges in Porting CUDA-Optimized Code
on Pre-Production Intel GPU Hardware
using Intel oneAPI




Terminology/Concepts Mapping

CUDA

CUDA programming model hides SIMD operations by exposing a physical thread as a number
of logical threads.

Warp: is a physical thread consisting of 32 consecutive logical threads
Thread Block Size = number of physical threads * 32 (warp size)

CUDA kernel is written to operate on scalars. In other words, kernel can be viewed as a code
that is executed by every logical thread.

Logical threads in a warp can take different paths in the program — SIMT model.

For effective utilization of device memory consecutive threads in a warp should access
consecutive memory locations.



Terminology/Concepts Mapping

oneAP|

+ Work ltem is equivalent to CUDA threads

 Work Group is equivalent to CUDA thread block
« Work Group Size = # of thread (physical) * SIMD sub-group size (< Max Work Group Size)
« NOTE: Unlike CUDA block size where warp size for current models is 32, the SIMD sub-group
size can be specified by the user as 8, 16, 32

» Nd range specifies work-items hierarchy
« Global range (64, 8)
« Local range for each work group (16, 8)

« NOTE: Intel oneAP| work group size is 16 x 8 and equivalent CUDA work group size is 32 x4 . The
second dimension of oneAPI work group range is the SIMD sub-group size, whereas in CUDA the
first dimension of CUDA thread block is the SIMD sub-group size. This is important to know as
coalesced memory load or vectorization is happening along different dimensions.



Intel oneAP| Features

Intel oneAPI

« Subgroup Block Access: Enable a work-item to access a block of memory.
« How should data be laid out to get the maximum benefit 7

Intel graphics have instructions eptimized for memory block loads/stores. So if work-items in a sub-group ac-

cess a contiguous block of memory, we can use the sub-group block access functions to take advantage of
these block load/store Instructions.

intel::reqd _sub group size(16) % = 5q. load< Slglabal pbe (E(data2 [hase ¥ 11)9) s
er) . SEOLe global plLe lata[base + . X):
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Where can block access be useful? Memory bound problems?



Optimized Intel oneAP| Implementation for
Pre-Production Intel GPU Based on CUDA Optimized Code

CUDA Optimized Code DPC++ code

cim3 nst oaThreads{(BRLOCK DIM X, RLOCK DIM Y, )i ahaparalle] Ford: 34 acdver pointhix{
. - - - ayclrmd range< > {sycl:rrange< > (BLOCK DTM Y, gudimx),
syclirrange<:>(BELOCK DIM ¥, BLOCK DIM X)
__shared  float sm f[=][=][BLOCK _DIM ¥]: by karm )i
int const k = threadldx.x ¥ =;

int const 1 = threadIdx.x / =3 [intel::reqd sub group size(32))

int n = start + blockIdx.x * blockDim.y + threadIdx.y - i; r—————JEI

if ( (n < end) &R (1 < 5)) { l 4 if ( (o0 < end) && (L < ")) {
int istart = iam[n]; PR = 03

irt iend = iam[n + 1];
for ( j = istart; § < fend; d++) {
jame = jam[3j] - =;

;I-'I"I.I = jl| ||'1"|,.1 iTth = ] -

for (i = istart = ; 7 <€ iend = |; 74+#) |

fk += A OFF(k, 1, 3) * BQ(1, Jjam@); fk += A OFF(k, 1, 1) * DO, jaml);:
} jAin] = I..__--‘r:_[i -+ ] =] [
sm_F[k][1][threadldx.yv] = Fk; }
} Fk += A OFF(k, L, iend - 1y + DOEL, Fami):
__syncthraads(); 2 ik . Pk, L. =" | TS I
gm tIE}ILIME1dy) = fk;
I
item.barrisp(syizl: raccessy: fence spacer:local spaie);



Other Approaches Explored using Features
Supported on the Intel Hardware

« Subgroup of various sizes from 8 to 32 with different mapping on
row blocks of the sparse matrix

+ Jason Sewall (Intel) also implemented a version that uses
subgroup block access

» Explored SIMD SYCL Extensions
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Thanks to the Intel team who are very supportive in enabling and understanding optimization issues
for programming Intel GPUs using oneAP!:

Kevin O'Leary, Zhigi Tao, Jason Sewall, Scott Huck, Jeff Hammond, Alexander Tolikin, Mark Valcich,
Jeff Rodgers, Tom Zahniser, and many others.



Conclusions

« Scientific kernels can greatly benefit from emerging high-performance architectures such as GPUs.

« For achieving performance on these architectures it is necessary to put effort in careful planning and
optimization of computationally intensive kernels.

« For optimizing code on a given architecture, it is necessary to understand the underlying architecturs.

» The compiler hides the architecture from the application developer and tries to generate optimized code for a
given architecture. However, a number of applications require a restructuring of code to match the
architecture, which is difficult to de in an automated way by the compiler or by a run-time environment.

« For these applications, it is much easier to restructure the code at the application level to match the underlying
architecture.



