Experiences in Moving
CUDA-Optimized Kernels to
Intel GPUs using oneAPI

Mohammad Zubair Old Dominion University
Chris Stone National Institute of Aerospace
Aaron Walden NASA Langley Research Center

Eric Nielsen NASA Langley Research Center

Qutline

« Motivation

« Multicolor Point-Implicit Solver

« CUDA Approach for Optimization of Solver on GPU

« Porting CUDA Optimized Code on Pre-Production Intel GPU
Hardware Using Intel oneAPI

« Challenges and different approaches explored

« Conclusion

CFD Vision 2030 Study

TRL . LOWN o Techssiony Lk soorm * Techioligy Demansiraion 59 Decisess Gale
MEDIUM
B 1o 2015 2020 2025 2030
e e e oG D rure s FEsiewy JL e B el L 0P, unwanry,
HPC Wiz) mate e ara el D || o ca pkle W AT s E e b g, g
WREACAD codes oy . FLdti SONLIH Ly Al et [t B
CTD on Maswy sy Foapfiet Systeme
PETASCALE A
-
D on Reesiubioney Syrtams Ty .

T T W W W TR T ———

] — e -ld.q"d_ -“7-1 [
WAMK n CFO codden Y

Urritmasly, Cormjses ganmaieg, seqarsied o of v

w0 *ﬂmm Beynnicn nlsmterie 0. hagh litt] . A

VRN LN ML E S s ppepees D Piad agerasials Mg

CFD Vision 2030 Study Physical Modeling

4 Path fo Revoptionary Computatianal

.
HEMQICEnTay

| cremcuirms Ut rsdp, 5 aismioriey sofaaimta T
miE | oy Bt riigl i Bt iR o 8 o 8

Wiibrgite
Gy coaummyinne foe s L'!L‘F"':'I"!'L'-i". i

f
sutesvated v bt smein W SRS ConfigurEion it pa il gy e L

pdg | Lo L 0 . t {)_Ll."‘];,__:_.-.-i Anhas

| Ty L) i & | L H LargE iuied flnra S Al b on OF T

Chanctecyre if UL mawrgisans Mollazes gvint b ntuoe CFD ton 1l il "';r v il Sl i

I - | LA brmr A Ed £ AR pk e = LFT
Geometry and Grid = e —sa—le eh - . ke !
G‘Mmﬂ'ﬂn defagmaw Tl . rl'.I;.:..-:’-,‘:r :l.ﬂ"'_..'.-‘i !,;"."!.! 1

d Smpntviti l Crmipna pf vsal Ean 1w Aty Seiabmsc 1000 N prEdy CF D

= T R P
will blagsy i S

- sty v gehan Wl plaky win compints WO of sll dals ssalres

Pimass skt | v |
K“mdﬂﬂEIh'Hﬁﬂn —*- ; i = e

Chs gesiared sitaipial st T 0f 8 & ﬂ.umm'u.lﬁ-nlmu]‘

A8 proiet-wry L1 D esrsiaiion iy 1 sty ety £ F Dy poemiptuse.

NASA/CR-2014-218178 e A
See htp://www.cid2030.com MDAO ————— R *
*SLLrly g Mot CFL MEAG s o4 n e T Erties) MOAG

TR Pty zewa bt BEET (8.0, TS BN |

Examples of Engineering Use

« NVIDIA V100 GPU improves aver Intel Xeon Skylake CPU by 4-5x
» NVIDIA A100 GPU improves to 7-8x

+ GPUs typically bundled in nodes with 4, 6, or 8 GPUs

« GPU nodes are more expensive, but still a win on performance/ $

o

N

Supersonic Flows Rotorcraft Space Launch System
r.' TP sy | e { P - !lm—;-:-—u | _l'v;i‘q—lﬂr—liﬂ — i 1 — m“..*:-.: i i' F;m:.m—muu.—m
> L0 i (0 T ‘ . . + f‘ o i ‘ b phbdesy i - ikiﬁl B e (i \‘ RE T T
g | 3 i} il 1 3 \ !
| T) ; : i i »\ |
| | e] i

" - = = - ¥ :) 1 l b bl : Ey
j ' - 23x - ' T = 25% - I 1
[—— — e g Rl R — "5 e — -} AT e T : E 1 3 b ik R p—— T — T T T i

Wl T, mary LR] Tidie S wwadl Ty, s i tama . . M Vi e
3. GPY nodes of BV 100 37 mips 2 6P nodes of DV 108 28 mins 17 GPU nades of GxV100: 17 mins
3 CPU npdes of 126 cores Yo hrs 2 CPU nodes of 80 cores 11 his 11 CPY nodes of 440 cores: 7 hrs
R or aR
18 GFUs do the work of 103 CPUs (4120 cores) 12 GPYs do the work of 88 CPUs (2 408 cores) Bh GPYs do the work of 350 CPUs (14,900 cores)

Recent Summit Campaigns

= Summit Early Science, INCITE campaigns for simulations of 16-meter diameter
human-scale Mars lander with O,/CH. combustion in Martian CO, atmosphere Temperature

« DES of 10 species/19 reactions, 7B elements, seconds of real time
* Runs on 15,912 V100s with approximate throughput of several million CPU cores

« Big data: 90 GB of asynchronous /O every 30 seconds for 2 days yields ~1 PB
per run; 60 TB/day migrated from ORNL to NASA Ames

« Stepping stone to CFD 2030 exascale milestones

FUN3D Test Problem

Transonic turbulent flow over a semi-span wingbody
consisting of 1,123,718 grid vertices, 1,172,171
prisms, 3,039,656 tetrahedra, and 7,337 pyramids.

The off-diagonal matrix consists of 19,106,474
blocks.

15 iterations of the linear solver are timed.

Multicolor Point-Implicit Solver

fori=1ton time steps
do
Form Right Hand Side
Form Left Hand Side

« FUNBS3D solves the Navier-Stokes equations
of fluid dynamics using implicit time integration
on general unstructured grids

Solve AAQ =R
« This approach gives rise to a large block-sparse Update Solution
system of linear equations that must be solved at ~ end for

each time step

« Multicolor point-implicit linear solver used to solve A AQ =R

Multicolor Point-Implicit Solver: Basics

* Implicit scheme results in linear systems of equations:

o AAQ =R, Ais asparse nxn block matrix
o Typically 14-19 blocks per row
o block is of size nbxnb (typically, nb = 3)

* Matrix A is segregated into two separate matrices:
o A= 0+ D, where O and D represent the off-diagonal and diagonal blocks of A
o D is always stored in double precision (FP64)
o 0 is typically stored in single precision (FP32), option for half-precision (FP16)

* Prior to performing each linear solve, each diagonal block D is decomposed
In-place into lower and upper triangular matrices

Multicolor Point-Implicit Solver

Uses a series of multicolor point-implicit sweeps to form an approximate solution to A AQ =R

« Color by rows which share no adjacent unknowns; re-order rows by color contiguously

+ Unknowns of the same color carry no data dependency and may be updated in parallel

+ Updates of unknowns for each color use the latest updated values for other colors

« The overall process may be repeated using several outer sweeps over the entire system

2 29 Algorithm 1 MULTICOLOR LINEAR SOLVER

12 14 18 9 I: AQ =1
e ? 32 o 2 for i+ 11to nyer do

o 3 T 16 " 1o ¢ 3 for e «— 1 to n. do
T A L [4 Ar - Re — 0.4Q

R R i 5: AQ. «— D A
e 30 ; 3311 35 f: end for
R 19 .2 % 7: end for

Matrix Storage and Performance Issues

o The dominant computation in the block-sparse linear solver is a block-sparse
matrix-vector operation with a typical block size of 5 X 5

o Memory bound computation so it is critical to utilize the memory bandwidth
effectively

o The matrix is stored in a block CSR format, where the non-zero blocks in a row are
stored contiguously in the memory

o A block is stored in a column-major order

seses seees Matrix view

seoo eee ¢ see o Layout in memory

Naive Implementation on NVIDIA V100

Memory access pattern for the Block Sparse Matrix Vector Operation

naive implementation results in

very poor utilization of memory —— - e —

bandwidth. R FHR It
Consecutive threads are [T P

accessing memory locations that MeaH " ee s Praes =

llllllllll

not consecutive.

V100: ~500ms ~70GB/s

%Peak: 7.7% TP:900 GB/s

Optimization Issues for Multicolor Linear Solver

s RiEad Matrix view

[& N W
i eesea
2 [BN B N |
Frsame
: s ae
L]
L]
[]
L |
.
']
.
@

“es o esee o Layout in memory

Ensure requests are for data that is
stored in consecutive locations

The size of request (# of data
elements) depends on the hardware

GPU Memory
Subsystem

Optimization Issues on GPU

o GPU supports Single Instruction Multiple Thread (SIMT) model with a
group of threads referred to as warp (or wavefront)

o The dimension of this thread group can vary from one GPU to another,
and the group must process consecutive memory locations to achieve
coalesced memory accesses

o This requires mapping the warp (or wavefront) to one or more blocks
of a sparse matrix and restructuring the computation accordingly

Block Sparse Matrix Vector-FUN3D (CUDA)

Thread #0 of warp +——p Map a warp to a 5x5 block

L B a8 D a8 a0 0
e D000 T EE R aaoe s - . -
. eeses S rret Note: only 25 threads are active, 7 threads are
i o000 e o000 eesdae i i
LA BN s ao8 8 seoaw |naCtEUE
Thread £24 of warp ‘_,/>
k = threadIdx.x % 53
1l = threadIdx.x / 5}
Output 1s a2 525 biock of
for (j=istart-1; j < iend; j++) { partial terms
colid = jam[i]; : : : : :
fik += A_OFF(k,1,3)*DQ(1,colid-1); ,f}_.? B Ee
} eeene
@ e o0

//save partial aggregation in shared memory
sm_flk]l[1][threadidx.y] = Fk;

: affregals
use shlffle to aggregate ngubﬁﬂmmns in

shared memory into a

alternate: avoid shared memory, I \isg a8 Uiread

f Redimtion Slong She sUboolumns sing .
V100: ~48ms ~716 GB/s A = i; o STRECIEDIN
: Fl = F1 + _ _sh¥l_ syne(y Fiy s 1 ® 5)s ®
Performance improvement: 10x F1x F1 e _sHELsync(orioireir, fi, ke = ¥ 5)i g
Fl = f1 = _shfl_sync(o T A § * 3
%Peak: 79% TP:900 GB/s FL= F1 o _shfl sync(: T lkeevsy; ©

Challenges in Porting CUDA-Optimized Code
on Pre-Production Intel GPU Hardware
using Intel oneAPI

Terminology/Concepts Mapping

CUDA

CUDA programming model hides SIMD operations by exposing a physical thread as a number
of logical threads.

Warp: is a physical thread consisting of 32 consecutive logical threads
Thread Block Size = number of physical threads * 32 (warp size)

CUDA kernel is written to operate on scalars. In other words, kernel can be viewed as a code
that is executed by every logical thread.

Logical threads in a warp can take different paths in the program — SIMT model.

For effective utilization of device memory consecutive threads in a warp should access
consecutive memory locations.

Terminology/Concepts Mapping

oneAP|

+ Work ltem is equivalent to CUDA threads

 Work Group is equivalent to CUDA thread block
« Work Group Size = # of thread (physical) * SIMD sub-group size (< Max Work Group Size)
« NOTE: Unlike CUDA block size where warp size for current models is 32, the SIMD sub-group
size can be specified by the user as 8, 16, 32

» Nd range specifies work-items hierarchy
« Global range (64, 8)
« Local range for each work group (16, 8)

« NOTE: Intel oneAP| work group size is 16 x 8 and equivalent CUDA work group size is 32 x4 . The
second dimension of oneAPI work group range is the SIMD sub-group size, whereas in CUDA the
first dimension of CUDA thread block is the SIMD sub-group size. This is important to know as
coalesced memory load or vectorization is happening along different dimensions.

Intel oneAP| Features

Intel oneAPI

« Subgroup Block Access: Enable a work-item to access a block of memory.
« How should data be laid out to get the maximum benefit 7

Intel graphics have instructions eptimized for memory block loads/stores. So if work-items in a sub-group ac-

cess a contiguous block of memory, we can use the sub-group block access functions to take advantage of
these block load/store Instructions.

intel::reqd _sub group size(16) % = 5q. load< Slglabal pbe (E(data2 [hase ¥ 11)9) s
er) . SEOLe global plLe lata[base + . X):

x = sg.load<8>(global_ptr(&(data2[base + 0]))); S e daa e G LR
ey, staro<ts> (globaol :-"‘Tl:&{'l.-:--"- [ase + 11). =0):

B 10 32 dataz e e ! I <o aoupll

] 7 ce | e ™ <& PaE
F " oeg uwl] << "€ w1

> £< i Yo] << << gL'}
< syl f pandl g

x[0] x[1] x[2]

Where can block access be useful? Memory bound problems?

Optimized Intel oneAP| Implementation for
Pre-Production Intel GPU Based on CUDA Optimized Code

CUDA Optimized Code DPC++ code

cim3 nst oaThreads{(BRLOCK DIM X, RLOCK DIM Y,)i ahaparalle] Ford: 34 acdver pointhix{
. - - - ayclrmd range< > {sycl:rrange< > (BLOCK DTM Y, gudimx),
syclirrange<:>(BELOCK DIM ¥, BLOCK DIM X)
__shared float sm f[=][=][BLOCK _DIM ¥]: by karm)i
int const k = threadldx.x ¥ =;

int const 1 = threadIdx.x / =3 [intel::reqd sub group size(32))

int n = start + blockIdx.x * blockDim.y + threadIdx.y - i; r—————JEI

if ((n < end) &R (1 < 5)) { l 4 if ((o0 < end) && (L < ")) {
int istart = iam[n]; PR = 03

irt iend = iam[n + 1];
for (j = istart; § < fend; d++) {
jame = jam[3j] - =;

;I-'I"I.I = jl| ||'1"|,.1 iTth =] -

for (i = istart = ; 7 <€ iend = |; 74+#) |

fk += A OFF(k, 1, 3) * BQ(1, Jjam@); fk += A OFF(k, 1, 1) * DO, jaml);:
} jAin] = I..__--‘r:_[i -+] =] [
sm_F[k][1][threadldx.yv] = Fk; }
} Fk += A OFF(k, L, iend - 1y + DOEL, Fami):
__syncthraads(); 2 ik . Pk, L. =" | TS I
gm tIE}ILIME1dy) = fk;
I
item.barrisp(syizl: raccessy: fence spacer:local spaie);

Other Approaches Explored using Features
Supported on the Intel Hardware

« Subgroup of various sizes from 8 to 32 with different mapping on
row blocks of the sparse matrix

+ Jason Sewall (Intel) also implemented a version that uses
subgroup block access

» Explored SIMD SYCL Extensions

Resources

hitps:f//sofiware. intel.com/content/www/us/en/devalop/decumentatio

¢! an/oneapl-gpu-oplimization-guidetop htmi
e P - - St iy - i S| -

-
Iy
-
el
11]
- |
-

= I =TI AN T
T o e N 1BADERTAL
1 DOOR ST O SOt a0] OO

i:.'_ -I_. .I:] 1 _I' I|r I.":Ir I !. I‘!‘t“"! I'III!- II".; 'T:'I."PT."I" l.-;.E""I.'::a E-!h:' :.;'u'rl".: I:.:'.r_l'l'_.r! :Ilfl:l!h:t 'I--' : :1-_I}Ir I':I I_‘! ‘__I":I; :i = I:'! L.'Ir—-Er?L:--':' il-‘j_: _ :':Ig .: 1 I-"‘I:Ié I_ r --'..! ‘_:!I"'I‘.-]..." !':I_gl'.l.'_ ':ilt .::-_1; =
et R 1=
reference/lop/optimization-and-pro

programming-guide/vectonzation/explic
oEl - B . T=lch

t-vector-p!

i pgramming/explict-simd-sycl-axtension htiml

Thanks to the Intel team who are very supportive in enabling and understanding optimization issues
for programming Intel GPUs using oneAP!:

Kevin O'Leary, Zhigi Tao, Jason Sewall, Scott Huck, Jeff Hammond, Alexander Tolikin, Mark Valcich,
Jeff Rodgers, Tom Zahniser, and many others.

Conclusions

« Scientific kernels can greatly benefit from emerging high-performance architectures such as GPUs.

« For achieving performance on these architectures it is necessary to put effort in careful planning and
optimization of computationally intensive kernels.

« For optimizing code on a given architecture, it is necessary to understand the underlying architecturs.

» The compiler hides the architecture from the application developer and tries to generate optimized code for a
given architecture. However, a number of applications require a restructuring of code to match the
architecture, which is difficult to de in an automated way by the compiler or by a run-time environment.

« For these applications, it is much easier to restructure the code at the application level to match the underlying
architecture.

