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Overview of Presentation

« Introduction to NAMD molecular dynamics application

. How NAMD parallelization makes use of GPUs

- Porting NAMD from CUDA to oneAPI| / DPC++

- Relative debugging techniques for porting CUDA codes




NAMD: Nanoscale Molecular Dynamics
hitps://www.ks.uluc.edu/Research/namd/
Phillips, et al. J. Chem. Phys. 153, 044130 (2020)

+Parallel molecular dynamics application
written in C++ with Charm++ objects

Runs on all major operating systems, on
laptops up through supercomputers

Specializes in parallel scaling of large
biomolecular simulations

Many advanced features:

~ Enhanced sampling methods
Alchemical free energy methods
Collective variables module (Colvars)
TCL and Python scripting

Over 25,000 registered users
Investigations of coronavirus (SARS-CoV-2) spike dynamics.
Over 15,000 citations of our NAMD Credit: Tianle Chen, Karan Kapoor, Emad Tajkhorshid (UIUC).
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NAMD Simulating SARS-CoV-2 on Frontera and Summit
Collaboration with Amaro Lab at UCSD, images rendered by VMD
Winner of Gordon Bell Special Prize at SC20, project involved overall 1.13 Zettaflops of NAMD simulation

(A) Virion, (B) Spike, (C) Glycan shield conformations Scaling performance:

. ~305M atom virion — @4096 nodes 12.4K atoms/GPU
A ~8.5M atom spike — @1024 nodes 1.4K atoms/GPU
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Molecular Dynamics Simulation

Most fundamentally, integrate Newton’s equations of motion:
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Parallelism for MD Simulation Limited to Each Timestep

Computational workflow of MD:

Loop militons
of Pmesiens

N particle particle
nitialize —— _ _
positions forces
- . about 99% of
| computational work

reduced quanhtnes energy, temperature, pressure)
position coordinates (trajectory snapshot)




Improve Parallelism: Decompose Data and Work

Kale et al., J. Comp. Phys. 151:283-312, 1999

- Atoms are decomposed into fixed volume patches

within the system

Forces that move atoms are calculated in parallel at
each step between adjacent patches

Work decomposition into compute objects creates
much greater amount of parallelization, facilitates
measurement-based load balancing with Charm++

Migrate atoms to adjacent patches, updating domain
decomposition after every cycle (e.g., 20 steps)

Spatial decomposition of

atoms into patches
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NAMD Decomposes Force Terms into
Fine-Grained Objects for Scalability

Offload forces to GPU

Requires aggregating compute objects

Bonded Computes
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NAMD Offloads Force Calculation to GPU

force

calculation

on GPUs

update
coordinates
on CPUs
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Partition work between CPU and GPU
Showing approximate percentage of total work per step:

Short-range non-bonded forces (90%)

Long-range PME electrostatics (5%)

Bonded forces (2%)

, Corrections for excluded interactions (2%)

Integrator, rigid bond constraints (1%)

Enhanced sampling methods: additional forces, grid patentials, collective variables




Why is NAMD adopting oneAPI?

. Support upcoming exascale computers: ANL Aurora (Intel)

- oneAP| / DPC++ provides advantages

- Modern C++ interface to GPU devices

- Host-side code is much simpler than OpenCL
- Same data structure definitions for both host and device
- DPC++ incorporates open-standard SYCL with community extensions

- Code portability across various hardware targets: CPU, GPU, FPGA




How does DPC++ differ from CUDA?

Uses advanced C++ features, such as lambda expressions to define per-thread work and
exceptions (try-catch block) for error handling
Memory management & transfers
- Asynchronous by default
- Associated with a SYCL gueue (including allocations/frees)
Shared memory allocations — local memory accessors (created before kernel invocation)
Does not assume a certain SIMD width (warp and sub-group)
- Should generalize warp-based mechanisms
Can enforce a sub-group size




NAMD has a LOT of CUDA code

Start oneAPI / DPC++ porting with stable code base (version 2.14)

Caomponent & of C/h tiles # of cu files # of kernels src line count

Non-bonded force
Bonded force
PME - single node
PME - scalable
Utilities

Total




Porting Strateqy

We used a divide-and-conquer strategy, by using preprocessor switches to decouple
the components in the CUDA code

- Significantly reduces development and debugging complexity

Separated components include

- Non-bonded force & device utilities

- Bonded force

- PME (Particle-Mesh Ewald) — uses FFT

Utilizing oneAPI libraries:
oneDPL uses C++17 parallel STL sort and scan operations to replace CUB library
- oneMKL FFT replaces cuFFT library
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Accelerated Development with DPCT

. Utilized Intel® DPC++ Compatibility Tool (DPCT) to accelerate code
development

- Started with migrating the CUDA implementation
- Saves > 80% of code porting effort

- For example, threadldx.x — ndltem.get_local_id(2)

- Provides a good source to practice DPC++ syntax




DPC++ Offloading of the Force Computations

+ Successful DPC++ offloading of NAMD to:
- Intel® Xeon® CPU
- Intel Gen9 integrated graphics
- Intel® Iris® Xe Max and Xe — HP Software Development Platform discrete graphics

Enabled multi-GPU and multi-node scalability with DPC++

Includes implementation of DPC++ offload code management in NAMD
- Interface with Charm++
- Perform data management (transfer and storage)

- Multiple CPU threads offloading to multiple DPC++ devices

. Validated benchmarks: Tiny (512 atoms), ApoA1 (90K), F1-ATPase (328K), STMV (1M)
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DPC++ Improves Vectorization

. Using flexible vector width optimization towards performance
portability to various architectures

. Changed use of CUDA warp primitives to generalized code
supporting DPC++ sub-groups for efficient vector computation on
different target architectures




Future Plans

Make the DPC++ implementation available to NAMD community

- Merge into the main public repository — targeting end-of-year
Port NAMD GPU-resident code path (NAMD 3.0) to DPC++

Use Intel® Viune Profiler and Intel® Advisor tools to continuously optimize NAMD
DPC++ for performance on Aurora supercomputer

Experiment with NAMD DPC++ on NVIDIA and AMD GPUSs




Debugging Challenges

. Chasing bugs in ported large applications from CUDA to DPC++ can
be involved

- Especially when dealing with large irregular arrays of structures

- Large arrays may be pipelined to multiple kernels and code crashes at later
stage when numbers become far from the expected value (e.g. NaNs)

- Sometimes we are porting a complex application outside of our domain of
expertise




Proposed Solution

Code porting mostly involves changing the syntax and library calls
- All/most of the algorithm and result remain the same

- Most/all non kKernels code remains intact

Add utilities to capture kernels’ input/output across languages (DPC++, CUDA)
- Write 1o a file the input/output data of the kernels in reference language

- RHead the data files in the development code and compare the arrays

Resulis
- Developed easy to add macros around the kernel call

- Allows the developer to capture the first difference location in code and data
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