
Springer Handbook on Speech Processing and Speech Communication 1

SPEECH RECOGNITION WITH WEIGHTED FINITE-STATE TRANSDUCERS

Mehryar Mohri1,3

1 Courant Institute
251 Mercer Street

New York, NY 10012
mohri@cims.nyu.edu

Fernando Pereira2

2 University of Pennsylvania
200 South 33rd Street

Philadelphia, PA 19104
pereira@cis.upenn.edu

Michael Riley3

3 Google Research
76 Ninth Avenue

New York, NY 10011
riley@google.com

ABSTRACT

This chapter describes a general representation and
algorithmic framework for speech recognition based
on weighted finite-state transducers. These trans-
ducers provide a common and natural representa-
tion for major components of speech recognition sys-
tems, including hidden Markov models (HMMs),
context-dependency models, pronunciation dictio-
naries, statistical grammars, and word or phone lat-
tices. General algorithms for building and optimizing
transducer models are presented, including composi-
tion for combining models, weighted determinization
and minimization for optimizing time and space re-
quirements, and a weight pushing algorithm for re-
distributing transition weights optimally for speech
recognition. The application of these methods to
large-vocabulary recognition tasks is explained in de-
tail, and experimental results are given, in particu-
lar for the North American Business News (NAB)
task, in which these methods were used to combine
HMMs, full cross-word triphones, a lexicon of forty
thousand words, and a large trigram grammar into
a single weighted transducer that is only somewhat
larger than the trigram word grammar and that runs
NAB in real-time on a very simple decoder. Another
example demonstrates that the same methods can be
used to optimize lattices for second-pass recognition.

1. INTRODUCTION

Much of current large-vocabulary speech recognition
is based on models such as hidden Markov mod-
els (HMMs), lexicons, orn-gram statistical language
models that can be represented byweighted finite-

state transducers. Even when richer models are used,
for instance context-free grammars for spoken-dialog
applications, they are often restricted, for efficiency
reasons, to regular subsets, either by design or by
approximation [Pereira and Wright, 1997, Nederhof,
2000, Mohri and Nederhof, 2001].

A finite-state transducer is a finite automaton
whose state transitions are labeled with both input
and output symbols. Therefore, a path through the
transducer encodes a mapping from an input symbol
sequence, orstring, to an output string. Aweighted
transducer puts weights on transitions in addition
to the input and output symbols. Weights may en-
code probabilities, durations, penalties, or any other
quantity that accumulates along paths to compute the
overall weight of mapping an input string to an out-
put string. Weighted transducers are thus a natural
choice to represent the probabilistic finite-state mod-
els prevalent in speech processing.

We present a detailed view of the use of weighted
finite-state transducers in speech recognition [Mohri
et al., 2000, Pereira and Riley, 1997, Mohri, 1997,
Mohri et al., 1996, Mohri and Riley, 1998, Mohri
et al., 1998, Mohri and Riley, 1999]. We show
that common methods for combining and optimiz-
ing probabilistic models in speech processing can
be generalized and efficiently implemented by trans-
lation to mathematically well-defined operations on
weighted transducers. Furthermore, new optimiza-
tion opportunities arise from viewing all symbolic
levels of speech recognition modeling as weighted
transducers. Thus, weighted finite-state transducers
define a common framework with shared algorithms
for the representation and use of the models in speech

Springer Handbook on Speech Processing and Speech Communication 2

recognition that has important algorithmic and soft-
ware engineering benefits.

We begin with an overview in Section 2, which
informally introduces weighted finite-state transduc-
ers and algorithms, and motivates the methods by
showing how they are applied to speech recogni-
tion. This section may suffice for those only inter-
ested in a brief tour of these methods. In the sub-
sequent two sections, we give a more detailed and
precise account. Section 3 gives formal definitions
of weighted finite-state transducer concepts and cor-
responding algorithm descriptions. Section 4 gives a
detailed description of how to apply these methods to
large-vocabulary speech recognition and shows per-
formance results. These sections are appropriate for
those who wish to understand the algorithms more
fully or wish to replicate the results.

2. OVERVIEW

We start with an informal overview of weighted au-
tomata and transducers, outlines of some of the key
algorithms that support the ASR applications de-
scribed in this chapter –composition, determiniza-
tion, and minimization, and their application to
speech recognition.

2.1. Weighted Acceptors

Weighted finite automata (or weighted acceptors) are
used widely in automatic speech recognition (ASR).
Figure 1 gives simple, familiar examples of weighted
automata as used in ASR. The automaton in Fig-
ure 1(a) is a toy finite-statelanguage model. The
legal word strings are specified by the words along
each complete path, and their probabilities by the
product of the corresponding transition probabilities.
The automaton in Figure 1(b) gives the possible pro-
nunciations of one word,data, used in the language
model. Each legal pronunciation is the phone strings
along a complete path, and its probability is given by
the product of the corresponding transition probabil-
ities. Finally, the automaton in Figure 1(c) encodes
a typical left-to-right, three-distribution-HMM struc-
ture for one phone, with the labels along a complete
path specifying legal strings of acoustic distributions
for that phone.

These automata consist of a set of states, an ini-
tial state, a set of final states (with final weights), and
a set of transitions between states. Each transition
has a source state, a destination state, a label and a
weight. Such automata are calledweighted finite-
state acceptors(WFSA), since theyacceptor recog-
nizeeach string that can be read along a path from
the start state to a final state. Each accepted string is
assigned a weight, namely the accumulated weights
along accepting paths for that string, including final
weights. An acceptor as a whole represents a set of
strings, namely those that it accepts. As a weighted
acceptor, it also associates to each accepted string the
accumulated weights of their accepting paths.

Speech recognition architectures commonly give
the run-time decoder the task of combining and opti-
mizing automata such as those in Figure 1. The de-
coder finds word pronunciations in its lexicon and
substitutes them into the grammar. Phonetic tree
representations may be used at this point to re-
duce path redundancy and thus improve search ef-
ficiency, especially for large vocabulary recognition
[Ortmanns et al., 1996]. The decoder then identi-
fies the correct context-dependent models to use for
each phone in context, and finally substitutes them
to create an HMM-level transducer. The software
that performs these operations is usually tied to par-
ticular model topologies. For example, the context-
dependent models might have to be triphonic, the
grammar might be restricted to trigrams, and the al-
ternative pronunciations might have to be enumer-
ated in the lexicon. In addition, these automata
combinations and optimizations are applied in a pre-
programmed order to a pre-specified number of lev-
els.

2.2. Weighted Transducers

Our approach uses finite-state transducers, rather
than acceptors, to represent then-gram grammars,
pronunciation dictionaries, context-dependency
specifications, HMM topology, word, phone or
HMM segmentations, lattices andn-best output lists
encountered in ASR. The transducer representation
provides general methods for combining models and
optimizing them, leading to both simple and flexible
ASR decoder designs.

A weighted finite-state transducer (WFST) is

Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1

5
better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1
d/1

2
ey/0.5

ae/0.5
3

t/0.3

dx/0.7
4

ax/1

(c)

0

d1

1
d1

d2

2
d2

d3

3
d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initialstate is represented by a bold circle, final states by double
circles. The labell and weightw of a transition are marked on the corresponding directed arcby l/w. When
explicitly shown, the final weightw of a final statef is marked byf/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this exampledata and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. Ittransducesa phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbolε as the transition’s output
label. In general, anε input label marks a transition
that consumes no input, and anε output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ε symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

Springer Handbook on Speech Processing and Speech Communication 4

(a)

0 1
using:using/1

2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5

d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples. Theseare similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. Theinput labeli, the output labelo, and weightw of
a transition are marked on the corresponding directed arc byi : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – Research Web site [Mohri et al., 2000].

Basicunion, concatenation, andKleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or then best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we providedlazy(also calledon-
demand) implementations of algorithms. Any finite-
state objectfsm can be accessed with the three main
methodsfsm.start(), fsm.final(state),
andfsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazyfsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-

Springer Handbook on Speech Processing and Speech Communication 5

0

1a:b/0.1

2
b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5 0 1
b:c/0.3

2/0.7
a:b/0.4

a:b/0.6

(a) (b)

(0, 0) (1, 1)
a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

(c)

Figure 3: Example of transducer composition.

word transducer whose word strings are restricted
to the grammar. A variety of ASR transducer com-
bination techniques, both context-independent and
context-dependent, are conveniently and efficiently
implemented with composition.

As previously noted, a transducer represents a bi-
nary relation between strings. The composition of
two transducers represents their relational composi-
tion. In particular, the compositionT = T1 ◦ T2 of
two transducersT1 andT2 has exactly one path map-
ping stringu to stringw for each pair of paths, the
first in T1 mappingu to some stringv and the sec-
ond inT2 mappingv to w. The weight of a path in
T is computed from the weights of the two corre-
sponding paths inT1 andT2 with the same operation
that computes the weight of a path from the weights
of its transitions. If the transition weights represent
probabilities, that operation is the product. If instead
the weights represent log probabilities or negative log
probabilities as is common in ASR for numerical sta-
bility, the operation is the sum. More generally, the
weight operations for a weighted transducer can be
specified by asemiring[Salomaa and Soittola, 1978,
Berstel and Reutenauer, 1988, Kuich and Salomaa,
1986], as discussed in more detail in Section 3.

The weighted composition algorithm generalizes
the classical state-pair construction for finite au-
tomata intersection [Hopcroft and Ullman, 1979] to
weighted acceptors and transducers. The states of the
compositionT are pairs of aT1 state and aT2 state.T
satisfies the following conditions: (1) its initial state
is the pair of the initial state ofT1 and the initial state
of T2; (2) its final states are pairs of a final state of
T1 and a final state ofT2, and (3) there is a transition
t from (q1, q2) to (r1, r2) for each pair of transitions
t1 from q1 to r1 andt2 from q2 to r2 such that the
output label oft1 matches the input label oft2. The
transitiont takes its input label fromt1, its output la-
bel fromt2, and its weight is the combination of the
weights oft1 and t2 done with the same operation
that combines weights along a path. Since this com-
putation islocal — it involves only the transitions
leaving two states being paired — it can be given
a lazy implementation in which the composition is
generated only as needed by other operations on the
composed automaton. Transitions withε-labels inT1

or T2 must be treated specially as discussed in Sec-
tion 3. Figure 3 shows two simple transducers, Fig-
ure 3(a) and Figure 3(b), and the result of their com-
position, Figure 3(c). The weight of a path in the

Springer Handbook on Speech Processing and Speech Communication 6

resulting transducer is the sum of the weights of the
matching paths inT1 andT2 (as when the weights
represent negative log probabilities).

Since we represent weighted acceptors by
weighted transducers in which the input and output
labels of each transition are identical, the intersection
of two weighted acceptors is just the composition of
the corresponding transducers.

2.4. Determinization

In a deterministic automaton, each state has at most
one transition with any given input label and there
are no inputε-labels. Figure 4(a) gives an example
of a non-deterministic weighted acceptor: at state0,
for instance, there are two transitions with the same
labela. The automaton in Figure 4(b), on the other
hand, is deterministic.

The key advantage of a deterministic automa-
ton over equivalent nondeterministic ones is its ir-
redundancy: it contains at most one path matching
any given input string, thereby reducing the time and
space needed to process the string. This is particu-
larly important in ASR due to pronunciation lexicon
redundancy in large vocabulary tasks. The familiar
tree lexicon in ASR is a deterministic pronunciation
representation [Ortmanns et al., 1996].

To benefit from determinism, we use a de-
terminization algorithm that transforms a non-
deterministic weighted automaton into an equivalent
deterministic automaton. Two weighted acceptors
are equivalentif they associate the same weight to
each input string; weights may be distributed dif-
ferently along the paths of two equivalent acceptors.
Two weighted transducers are equivalent if they as-
sociate the same output string and weights to each
input string; the distribution of the weight or output
labels along paths need not be the same in the two
transducers.

If we apply the weighted determinization algo-
rithm to the union of a set of chain automata, each
representing a single word pronunciation, we obtain
a tree-shaped automaton. However, the result of this
algorithm on more general automata may not be a
tree, and in fact may be much more compact than a
tree. The algorithm can produce results for a broad
class of automata with cycles, which have no tree rep-
resentation.

Weighted determinization generalizes the classi-
cal subset method for determinizing unweighted fi-
nite automata [Aho et al., 1986], Unlike in the un-
weighted case, not all weighted automata can be de-
terminized. Conditions for determinizability are dis-
cussed in Section 3.3. Fortunately, most weighted au-
tomata used in speech processing can be either deter-
minized directly or easily made determinizable with
simple transformations, as we discuss in sections 3.3
and 4.1. In particular, any acyclic weighted automa-
ton can always be determinized.

To eliminate redundant paths, weighted deter-
minization needs to calculate the combined weight of
all paths with the same labeling. When each path rep-
resents a disjoint event with probability given by its
weight, the combined weight, representing the prob-
ability of the common labeling for that set of paths,
would be the sum of the weights of the paths. Alter-
natively, we may just want to keep the most proba-
ble path, as is done in shortest path algorithms, lead-
ing to the so-calledViterbi approximation. When
weights are negative log probabilities, these two al-
ternatives correspond respectively to log summation
and taking the minimum. In the general case, we
use one operation, denoted⊗, for combining weights
along paths and for composition, and a second opera-
tion, denoted⊕, to combine identically labeled paths.
Some common choices of(⊕,⊗) include(max, +),
(+, ∗), (min, +), and (− log(e−x + e−y), +). In
speech applications, the first two are appropriate for
probabilities, the last two for the corresponding neg-
ative log probabilities. More generally, as we will
see in Section 3, many of the weighted automata al-
gorithms apply when the two operations define an
appropriate semiring. The choices(min, +), and
(− log(e−x +e−y), +) are called thetropical andlog
semirings, respectively.

Our discussion and examples of determiniza-
tion and, later, minimization will be illustrated with
weighted acceptors. Thestring semiring, whose two
operations are longest common prefix and concatena-
tion, can be used to treat the output strings as weights.
By this method, the transducer case can be handled as
well; see Mohri [1997] for details.

We will now work through an example of de-
terminization with weights in the tropical semiring.
Figure 4(b) shows the weighted determinization of
automatonA1 from Figure 4(a). In general, the de-

Springer Handbook on Speech Processing and Speech Communication 7

0

1a/1

2

a/2

b/3

3/0

c/5

b/3 d/6 (0,0) (1,0),(2,1)a/1

b/3

(3,0)/0c/5
d/7

(a) (b)

Figure 4: Determinization of weighted automata. (a) Weighted automaton over the tropical semiringA. (b)
Equivalent weighted automatonB obtained by determinization ofA.

terminization of a weighted automaton is equivalent
to the original, that is, it associates the same weight
to each input string. For example, there are two
paths corresponding to the input stringab in A1, with
weights{1 + 3 = 4, 2 + 3 = 5}. The minimum4 is
also the weight associated byA2 to the stringab.

In the classical subset construction for deter-
minizing unweighted automata, all the states reach-
able by a given input from the initial state are placed
in the same subset. In the weighted case, transitions
with the same input label can have different weights,
but only the minimum of those weights is needed and
the leftover weights must be kept track of. Thus,
the subsets in weighted determinization contain pairs
(q, w) of a stateq of the original automaton and a
leftover weightw.

The initial subset is{(i, 0)}, wherei is the initial
state of the original automaton. For example, in Fig-
ure 4, the initial subset for automatonB is {(0, 0)}.
Each new subsetS is processed in turn. For each
elementa of the input alphabetΣ labeling at least
one transition leaving a state ofS, a new transitiont
leavingS is constructed in the result automaton. The
input label oft is a and its weight is the minimum of
the sumsw + l wherew is s’s leftover weight andl
is the weight of ana-transition leaving a states in S.
The destination state oft is the subsetS′ containing
those pairs(q′, w′) in whichq′ is a state reached by a
transition labeled witha from a state ofS andw′ is
the appropriate leftover weight.

For example, in Figure 4, the transition leaving
(0, 0) in B labeled witha is obtained from the two
transitions labeled witha leaving state0 in A: its
weight is the minimum of the weight of those two
transitions, and its destination state is the subsetS′ =
{(1, 1 − 1 = 0), (2, 2 − 1 = 1)}. The algorithm is

described in more in detail in Section 3.3.
It is clear that the transitions leaving a given state

in the determinization of an automaton can be com-
puted from the subset for the state and the transi-
tions leaving the states in the subset, as is the case
for the classical non-deterministic finite automata
(NFA) determinization algorithm. In other words,
the weighted determinization algorithm is local like
the composition algorithm, and can thus be given a
lazy implementation that creates states and transi-
tions only as needed.

2.5. Minimization

Given a deterministic automaton, we can reduce its
size by minimization, which can save both space
and time. Any deterministic unweighted automaton
can be minimized using classical algorithms [Aho
et al., 1974, Revuz, 1992]. In the same way, any
deterministic weighted automatonA can be mini-
mized using our minimization algorithm, which ex-
tends the classical algorithm [Mohri, 1997]. The re-
sulting weighted automatonB is equivalent to the au-
tomatonA, and has the least number of states and the
least number of transitions among all deterministic
weighted automata equivalent toA.

As we will see in Section 3.5, weighted mini-
mization is quite efficient, indeed as efficient as clas-
sical deterministic finite automata (DFA) minimiza-
tion.

We can view the deterministic weighted automa-
ton A in Figure 5(a) as an unweighted automaton by
interpreting each pair(a, w) of a labela and a weight
w as a single label. We can then apply the stan-
dard DFA minimization algorithm to this automaton.
However, since the pairs for different transitions are

Springer Handbook on Speech Processing and Speech Communication 8

0

1

a/0

b/1

c/5

2

d/0

e/1

3

e/0
f/1

e/4

f/5

0/0

1

a/0

b/1

c/5

2

d/4

e/5

3/0

e/0
f/1

e/0

f/1
0/0 1

a/0
b/1
c/5

3/0e/0
f/1

(a) (b) (c)

Figure 5: Weight pushing and minimization. (a) Deterministic weighted automatonA. (b) Equivalent
weighted automatonB obtained by weight pushing in the tropical semiring. (c) Minimal weighted automaton
equivalent toA.

all distinct, classical minimization would have no ef-
fect onA.

The size ofA can still be reduced by using true
weighted minimization. This algorithm works in
two steps: the first steppushesweight among tran-
sitions, and the second applies the classical mini-
mization algorithm to the result with each distinct
label-weight pair viewed as a distinct symbol, as de-
scribed above. Weight pushing is useful not only as
a first step of minimization but also to redistribute
weight among transitions to improve search, espe-
cially pruned search. The algorithm is described in
more detail in Section 3.4, and analyzed in [Mohri,
2002]. Its applications to speech recognition are dis-
cussed in [Mohri and Riley, 2001].

Pushing is a special case ofreweighting. We de-
scribe reweighting in the case of the tropical semir-
ing; similar definitions can be given for other semir-
ings. A (non-trivial) weighted automaton can be
reweighted in an infinite number of ways that pro-
duce equivalent automata. To see how, leti be A’s
initial state and assume for convenienceA has a sin-
gle final statef .1 Let V : Q → R be an arbitrary
potentialfunction on states. Update each weightw[t]
of the transitiont from statep[t] to n[t] as follows:

w[t]← w[t] + (V (n[t])− V (p[t])), (1)

1Any automaton can be transformed into an equivalent automa-
ton with a single final state by adding a super-final state, making all
previously final states non-final, and adding from each previously
final statef with weightρ(f) anε-transition with the weightρ(f)
to the super-final state.

and the final weightρ(f) as follows:

ρ(f)← ρ(f) + (V (i)− V (f)). (2)

It is easy to see that with this reweighting, each po-
tential internal to any successful path from the initial
state to the final state is added and then subtracted,
making the overall change in path weight:

(V (f)− V (i)) + (V (i)− V (f)) = 0. (3)

Thus, reweighting does not affect the total weight of a
successful path and the resulting automaton is equiv-
alent to the original.

To push the weight inA towards the initial state
as much as possible, a specific potential function is
chosen, the one that assigns to each state the low-
est path weight from that state to the final state. Af-
ter pushing, the lowest cost path (excluding the final
weight) from every state to the final state will thus be
0.

Figure 5(b) shows the result of pushing for the
input A. Thanks to pushing, the size of the automa-
ton can then be reduced using classical minimization.
Figure 5(c) illustrates the result of the final step of the
algorithm. No approximation or heuristic is used: the
resulting automatonC is equivalent toA.

2.6. Speech Recognition Transducers

As an illustration of these methods applied to speech
recognition, we describe how to construct a single,
statically-compiled and optimized recognition trans-
ducer that maps from context-dependent phones to

Springer Handbook on Speech Processing and Speech Communication 9

k,ae ae,t
ae:ae/k_t

k,ae ae,t
t:ae/k_t

(a) (b)

Figure 6: Context-dependent triphone transducer transition: (a) non-deterministic, (b) deterministic.

words. This is an attractive choice for tasks that have
fixed acoustic, lexical, and grammatical models since
the static transducer can be searched simply and effi-
ciently with no recognition-time overhead for model
combination and optimization.

Consider the pronunciation lexicon in Fig-
ure 2(b). Suppose we form the union of this trans-
ducer with the pronunciation transducers for the re-
maining words in the grammarG of Figure 2(a) by
creating a new super-initial state and connecting an
ε-transition from that state to the former start states
of each pronunciation transducer. We then take its
Kleene closure by connecting anε-transition from
each final state to the initial state. The resulting
pronunciation lexiconL would pair any word string
from that vocabulary to their corresponding pronun-
ciations. Thus,

L ◦G (4)

gives a transducer that maps from phones to word
strings restricted toG.

We used composition here to implement a
context-independent substitution. However, a ma-
jor advantage of transducers in speech recogni-
tion is that they generalize naturally the notion of
context-independent substitution of a label to the
context-dependent case. In particular, the applica-
tion of the familiar triphone models in ASR to the
context-independent transducer, producing a context-
dependent transducer, can be performed simply with
composition.

To do so, we first construct a context-dependency
transducer that maps from context-independent
phones to context-dependent triphones. This trans-
ducer has a state for every pair of phones and a tran-
sition for every context-dependent model. In partic-
ular, if ae/k t represents the triphonic model forae

with left contextk and right contextt,2 then there
is a transition in the context-dependency transducer
from state(k, ae) to state(ae, t) with output label
ae/k t. For the input label on this transition, we
could choose the center phoneae as depicted in Fig-
ure 6(a). This will correctly implement the transduc-
tion; but the transducer will be non-deterministic. Al-
ternately, we can choose the right phonet as depicted
in Figure 6(b). This will also correctly implement the
transduction, but the result will be deterministic. To
see why these are correct, realize that when we en-
ter a state, we have read (in the deterministic case)
or must read (in the non-deterministic case) the two
phones that label the state. Therefore, the source state
and destination state of a transition determine the tri-
phone context. In Section 4, we give the full details
of the triphonic context-dependency transducer con-
struction and further demonstrate its correctness.

The above context-dependency transducer
maps from context-independent phones to context-
dependent triphones. We can invert the relation
by interchanging the transducer’s input and output
labels to create a new transducer that maps from
context-dependent triphones to context-independent
phones. We do this inversion so we can left com-
pose it with our context-independent recognition
transducerL ◦ G. If we let C represent a context-
dependency transducer from context-dependent
phones to context-independent phones, then:

C ◦ (L ◦G) (5)

gives a transducer that maps from context-dependent
2This use of/ to indicate “in the context of” in a triphone sym-

bol offers a potential ambiguity with our use of/ to separate a tran-
sition’s weight from its input and output symbols. However,since
context-dependency transducers are never weighted in thischap-
ter, the confusion is not a problem in what follows, so we chose to
stay with the notation of previous work rather than changingit to
avoid the potential ambiguity.

Springer Handbook on Speech Processing and Speech Communication 10

phones to word strings restricted to the grammarG.
To complete our example, we optimize this trans-
ducer. Given our discussion of the benefits of deter-
minization and minimization, we might try to apply
those operations directly to the composed transducer:

N = min(det(C ◦ (L ◦G))). (6)

This assumes the recognition transducer can be de-
terminized, which will be true if each of the compo-
nent transducers can be determinized. If the context-
dependencyC is constructed as we have described
and if the grammarG is ann-gram language model,
then they will be determinizable. However,L may
not be determinizable. In particular, ifL has am-
biguities, namely homophones (two distinct words
that have the same pronunciation), then it can not
be determinized as is. However, we can introduce
auxiliary phone symbols at word ends to disam-
biguate homophones to create a transformed lexi-
con L̃. We also need to create a modified context-
dependency transducer̃C that additionally pairs the
context-independent auxiliary symbols found in the
lexicon with new context-dependent auxiliary sym-
bols (which are later rewritten to epsilons after all op-
timizations). We leave the details to Section 4. The
following expression specifies the optimized trans-
ducer:

N = min(det(C̃ ◦ (L̃ ◦G))). (7)

In Section 4, we give illustrative experimental re-
sults with a fully-composed, optimized (andfac-
tored) recognition transducer that maps from context-
dependent units to words for the North American
Business News (NAB) DARPA task. This transducer
runs about18× faster than its unoptimized version
and has only about1.4× times as many transitions
as its word-level grammar. We have found similar re-
sults with DARPA Broadcast News and Switchboard.

3. ALGORITHMS

We now describe in detail the weighted automata and
transducer algorithms introduced informally in Sec-
tion 2 that are relevant to the design of speech recog-
nition systems. We start with definitions and notation
used in specifying and describing the algorithms.

3.1. Preliminaries

As noted earlier, all of our algorithms work with
weights that are combined with operations satisfying
the semiringconditions. A semiring(K,⊕,⊗, 0, 1)
is specified by a set of valuesK, two binary oper-
ations⊕ and⊗, and two designated values0 and
1. The operation⊕ is associative, commutative, and
has0 as identity. The operation⊗ is associative, has
identity1, distributes with respect to⊕, and has0 as
annihilator: for alla ∈ K, a ⊗ 0 = 0 ⊗ a = 0. If
⊗ is also commutative, we say that the semiring is
commutative. All the semirings we discuss in the rest
of this chapter are commutative.

Real numbers with addition and multiplication
satisfy the semiring conditions, but of course they
also satisfy several other important conditions (for
example, having additive inverses), which are not re-
quired for our transducer algorithms. Table 3.1 lists
some familiar (commutative) semirings. In addition
to the Boolean semiring, and the probability semir-
ing used to combine probabilities, two semirings of-
ten used in text and speech processing applications
are thelog semiringwhich is isomorphic to the prob-
ability semiring via the negative-log mapping, and
the tropical semiringwhich is derived from the log
semiring using theViterbi approximation.

A semiring(K,⊕,⊗, 0, 1) is weakly left-divisible
if for any x andy in K such thatx ⊕ y 6= 0, there
exists at least onez such thatx = (x ⊕ y)⊗ z. The
⊗-operation iscancellativeif z is unique and we can
write: z = (x⊕y)−1⊗x. A semiring iszero-sum-free
if for anyx andy in K, x⊕y = 0 impliesx = y = 0.

For example, the tropical semiring is weakly left-
divisible with z = x −min(x, y), which also shows
that⊗ for this semiring is cancellative. The proba-
bility semiring is also weakly left-divisible withz =

x
x+y

. Finally, the tropical semiring, the probability
semiring, and the log semiring are zero-sum-free.

For anyx ∈ K, let xn denote

xn = x⊗ · · · ⊗ x
︸ ︷︷ ︸

n

. (8)

When the infinite sum
⊕+∞

n=0 xn is well defined and
in K, the closure of an elementx ∈ K is defined
asx∗ =

⊕+∞

n=0 xn. A semiring isclosedwhen infi-
nite sums such as the one above, are well defined and
if associativity, commutativity, and distributivity ap-

Springer Handbook on Speech Processing and Speech Communication 11

Table 1:Semiring examples.⊕log is defined by:x⊕log y = − log(e−x + e−y).

SEMIRING SET ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

ply to countable sums (Lehmann [1977] and Mohri
[2002] give precise definitions). The Boolean and
tropical semirings are closed, while the probability
and log semirings are not.

A weighted finite-state transducerT =
(A,B, Q, I, F, E, λ, ρ) over a semiring K is
specified by a finite input alphabetA, a finite output
alphabetB, a finite set of statesQ, a set of initial
statesI ⊆ Q, a set of final statesF ⊆ Q, a finite set
of transitionsE ⊆ Q×(A∪{ε})×(B∪{ε})×K×Q,
an initial state weight assignmentλ : I → K, and
a final state weight assignmentρ : F → K. E[q]
denotes the set of transitions leaving stateq ∈ Q.
|T | denotes the sum of the number of states and
transitions ofT .

Weighted automata(or weighted acceptors) are
defined in a similar way by simply omitting the
input or output labels. Theprojection operations
Π1(T) andΠ2(T) obtain a weighted automaton from
a weighted transducerT by omitting respectively the
input or the output labels ofT .

Given a transitione ∈ E, p[e] denotes its origin
or previous state,n[e] its destination or next state,
i[e] its input label,o[e] its output label, andw[e] its
weight. A pathπ = e1 · · · ek is a sequence of con-
secutive transitions:n[ei−1] = p[ei], i = 2, . . . , k.
The pathπ is a cycle if p[e1] = n[ek]. An ε-cycle
is a cycle in which the input and output labels of all
transitions areε.

The functionsn, p, and w on transitions can
be extended to paths by settingn[π] = n[ek] and
p[π] = p[e1], and by defining the weight of a path as
the⊗-product of the weights of its constituent tran-
sitions: w[π] = w[e1] ⊗ · · · ⊗ w[ek]. More gen-
erally, w is extended to any finite set of pathsR
by settingw[R] =

⊕

π∈R w[π]; if the semiring is

closed, this is defined even for infiniteR. We de-
note byP (q, q′) the set of paths fromq to q′ and by
P (q, x, y, q′) the set of paths fromq to q′ with input
labelx ∈ A∗ and output labely ∈ B∗. For an accep-
tor, we denote byP (q, x, q′) the set of paths with in-
put labelx. These definitions can be extended to sub-
setsR, R′ ⊆ Q by P (R, R′) = ∪q∈R, q′∈R′P (q, q′),
P (R, x, y, R′) = ∪q∈R, q′∈R′P (q, x, y, q′), and, for
an acceptor,P (R, x, R′) = ∪q∈R, q′∈R′P (q, x, q′).
A transducerT is regulatedif the weight associated
by T to any pair of input-output strings(x, y), given
by

T (x, y) =
⊕

π∈P (I,x,y,F)

λ[p[π]]⊗ w[π]⊗ ρ[n[π]], (9)

is well defined and inK. If P (I, x, y, F) = ∅, then
T (x, y) = 0. A weighted transducer withoutε-cycles
is regulated, as is any weighted transducer over a
closed semiring. Similarly, for a regulated acceptor,
we define

T (x) =
⊕

π∈P (I,x,F)

λ[p[π]]⊗ w[π] ⊗ ρ[n[π]]. (10)

The transducerT is trim if every state occurs in
some pathπ ∈ P (I, F). In other words, a trim trans-
ducer has no useless states. The same definition ap-
plies to acceptors.

3.2. Composition

As we outlined in Section 2.3, composition is the core
operation for relating multiple levels of representa-
tion in ASR. More generally, composition is the fun-
damental algorithm used to create complex weighted
transducers from simpler ones [Salomaa and Soittola,

Springer Handbook on Speech Processing and Speech Communication 12

WEIGHTED-COMPOSITION(T1, T2)

1 Q← I1 × I2

2 S ← I1 × I2

3 while S 6= ∅ do
4 (q1, q2)← HEAD(S)
5 DEQUEUE(S)
6 if (q1, q2) ∈ I1 × I2 then
7 I ← I ∪ {(q1, q2)}
8 λ(q1, q2)← λ1(q1)⊗ λ2(q2)
9 if (q1, q2) ∈ F1 × F2 then

10 F ← F ∪ {(q1, q2)}
11 ρ(q1, q2)← ρ1(q1)⊗ ρ2(q2)
12 for each(e1, e2) ∈ E[q1]× E[q2] such thato[e1] = i[e2] do
13 if (n[e1], n[e2]) 6∈ Q then
14 Q← Q ∪ {(n[e1], n[e2])}
15 ENQUEUE(S, (n[e1], n[e2]))
16 E ← E ∪ {((q1, q2), i[e1], o[e2], w[e1]⊗ w[e2], (n[e1], n[e2]))}
17 return T

Figure 7: Pseudocode of the composition algorithm.

1978, Kuich and Salomaa, 1986], and generalizes
the composition algorithm for unweighted finite-state
transducers [Eilenberg, 1974-1976, Berstel, 1979].
Let K be a commutative semiring and letT1 andT2

be two weighted transducers defined overK such that
the input alphabetB of T2 coincides with the out-
put alphabet ofT1. Assume that the infinite sum
⊕

z∈B∗ T1(x, z) ⊗ T2(z, y) is well defined and in
K for all (x, y) ∈ A∗ × C∗, whereA is the input al-
phabet ofT1 andC is the output alphabet ofT2. This
will be the case ifK is closed, or ifT1 has noε-input
cycles orT2 has noε-output cycles. Then, the result
of the composition ofT1 andT2 is a weighted trans-
ducer denoted byT1 ◦ T2 and specified for allx, y
by:

(T1 ◦ T2)(x, y) =
⊕

z∈B∗

T1(x, z)⊗ T2(z, y). (11)

There is a general and efficient composition algo-
rithm for weighted transducers [Salomaa and Soit-
tola, 1978, Kuich and Salomaa, 1986]. States in the
compositionT1 ◦ T2 of two weighted transducersT1

andT2 are identified with pairs of a state ofT1 and a
state ofT2. Leaving aside transitions withε inputs or
outputs, the following rule specifies how to compute

a transition ofT1 ◦T2 from appropriate transitions of
T1 andT2:

(q1, a, b, w1, r1) and(q2, b, c, w2, r2)
=⇒ ((q1, q2), a, c, w1 ⊗ w2, (r1, r2)).

(12)

Figure 7 gives the pseudocode of the algorithm in the
ε-free case.

The algorithm takes as input two weighted trans-
ducers

T1 = (A,B, Q1, I1, F1, E1, λ1, ρ1) and
T2 = (B, C, Q2, I2, F2, E2, λ2, ρ2),

(13)

and outputs a weighted finite-state transducerT =
(A, C, Q, I, F, E, λ, ρ) implementing the composi-
tion of T1 and T2. E, I, andF are all initialized
to the empty set and grown as needed.

The algorithm uses a queueS containing the set
of pairs of states yet to be examined. The queue
discipline ofS is arbitrary, and does not affect the
termination of the algorithm. The state setQ is ini-
tially the set of pairs of initial states of the original
transducers, as isS (lines 1-2). Each time through
the loop in lines 3-16, a new pair of states(q1, q2)
is extracted fromS (lines 4-5). The initial weight

Springer Handbook on Speech Processing and Speech Communication 13

of (q1, q2) is computed by⊗-multiplying the initial
weights ofq1 andq2 when they are both initial states
(lines 6-8). Similar steps are followed for final states
(lines 9-11). Then, for each pair of matching transi-
tions(e1, e2), a new transition is created according to
the rule specified earlier (line 16). If the destination
state(n[e1], n[e2]) has not been found previously, it
is added toQ and inserted inS (lines 14-15).

In the worst case, all transitions ofT1 leaving
a stateq1 match all those ofT2 leaving stateq′1,
thus the space and time complexity of composition is
quadratic:O(|T1||T2|). However, a lazy implemen-
tation of composition can be used to construct just
the part of the composed transducer that is needed.

More care is needed whenT1 has outputε labels
andT2 input ε labels. Indeed, as illustrated by Fig-
ure 8, a straightforward generalization of theε-free
case would generate redundantε-paths and, in the
case of non-idempotent semirings, would lead to an
incorrect result. The weight of the matching paths
of the original transducers would be countedp times,
wherep is the number of redundant paths in the com-
position.

To solve this problem, all but oneε-path must be
filtered out of the composition. Figure 8 indicates
in boldface one possible choice for that path, which
in this case is the shortest. Remarkably, that filter-
ing mechanism can be encoded as a finite-state trans-
ducer.

Let T̃1 and T̃2 be the weighted transducers ob-
tained fromT1 andT2 respectively by replacing the
outputε labels ofT1 with ε2 and the inputε labels of
T2 with ε1. Consider the filter finite-state transducer
F represented in Figure 9. TheñT1◦F ◦T̃2 = T1◦T2.
Since the two compositions iñT1 ◦ F ◦ T̃2 do not
involve ε labels, theε-free composition already de-
scribed can be used to compute the resulting trans-
ducer.

Intersection (orHadamard product) of weighted
automata and composition of finite-state transducers
are both special cases of composition of weighted
transducers. Intersection corresponds to the case
where input and output labels of transitions are iden-
tical and composition of unweighted transducers is
obtained simply by omitting the weights.

0	

x:x
ε2:ε1

1	
ε1:ε1

2	

ε2:ε2

x:x

ε1:ε1

x:x

ε2:ε2

Figure 9: Filter for compositionF .

3.3. Determinization

We now describe the generic determinization algo-
rithm for weighted automata that we used informally
when working through the example in Section 2.4.
This algorithm is a generalization of the classical
subset construction for NFAs (unweighted nonde-
terministic finite automata). The determinization of
unweighted or weighted finite-state transducers can
both be viewed as special instances of the generic al-
gorithm presented here but, for simplicity, we will
focus on the weighted acceptor case.

A weighted automaton isdeterministic (also
known assubsequential) if it has a unique initial state
and if no two transitions leaving any state share the
same input label. Thedeterminizationalgorithm we
now present applies to weighted automata over a can-
cellative weakly left-divisible semiring that satisfies
a mild technical condition.3 Figure 10 gives pseu-
docode for the algorithm.

A weighted subsetp of Q is a set of pairs(q, x) ∈
Q×K. Q[p] is the set of statesq in p, E[Q[p]] is the
set of transitions leaving those states, andi[E[Q[p]]]
the set of input labels of those transitions.

The states of the result automaton are weighted
subsets of the states of the original automaton. A
stater of the result automaton that can be reached
from the start state by pathπ is the weighted set of
pairs (q, x) ∈ Q × K such thatq can be reached
from an initial state of the original automaton by
a pathσ with i[σ] = i[π] and λ[p[σ]] ⊗ w[σ] =

3If x ∈ P (I, Q), thenw[P (I, x, Q)] 6= 0, which is satisfied
by trim automata over the tropical semiring or any other zero-sum-
free semiring.

Springer Handbook on Speech Processing and Speech Communication 14

0,0 1,1 1,2

2,1 2,2

3,1 3,2

4,3

a:d ε:e

b:ε

c:ε

b:ε

c:ε

ε:e

ε:e
d:a

b:e
(x:x) (ε1:ε1)

(ε1:ε1)

(ε1:ε1)

(ε2:ε2)(ε2:ε2)

(ε2:ε2) (ε2:ε2)

(x:x)

(ε2:ε1)

0 1a:a 2b:ε 3c:ε 4d:d

0 1a:d 2ε:e 3d:a

Figure 8: Redundantε-paths. A straightforward generalization of theε-free case could generate all the paths
from (1, 1) to (3, 2) when composing the two simple transducers on the right-handside.

λ[p[π]]⊗w[π]⊗x. Thus,x can be viewed as theresid-
ual weight at stateq. The algorithm takes as input a
weighted automatonA = (A, Q, I, F, E, λ, ρ) and,
when it terminates, yields an equivalent deterministic
weighted automatonA′ = (A, Q′, I ′, F ′, E′, λ′, ρ′).

The algorithm uses a queueS containing the set
of states of the resulting automatonA′, yet to be ex-
amined. The setsQ′, I ′, F ′, and E′ are initially
empty. The queue discipline forS can be arbitrar-
ily chosen and does not affect the termination of the
algorithm. The initial state set ofA′ is I ′ = {i′}
wherei′ is the weighted set of the initial states ofA
with the respective initial weights. Its initial weight
is 1 (lines 1-2).S originally contains only the subset
I ′ (line 3). Each time through the loop in lines 4-16,
a new weighted subsetp′ is dequeued fromS (lines
5-6). For eachx labeling at least one of the transi-
tions leaving a statep in the weighted subsetp′, a
new transition with input labelx is constructed. The
weightw′ associated to that transition is the sum of
the weights of all transitions inE[Q[p′]] labeled with
x pre-⊗-multiplied by the residual weightv at each
statep (line 8). The destination state of the transi-
tion is the subset containing all the statesq reached
by transitions inE[Q[p′]] labeled withx. The weight
of each stateq of the subset is obtained by taking the
⊕-sum of the residual weights of the statesp⊗-times
the weight of the transition fromp leading toq and
by dividing that byw′. The new subsetq′ is inserted
in the queueS when it is a new state (line 16). If any
of the states in the subsetq′ is final, q′ is made a fi-

nal state and its final weight is obtained by summing
the final weights of all the final states inq′, pre-⊗-
multiplied by their residual weightv (line 14-15).

The worst case complexity of determinization is
exponential even in the unweighted case. However,
in many practical cases such as for weighted au-
tomata used in large-vocabulary speech recognition,
this blow-up does not occur. It is also important to
notice that just like composition, determinization has
a natural lazy implementation in which only the tran-
sitions required by an application are expanded in the
result automaton.

Unlike in the unweighted case, determinization
does not halt on all input weighted automata. We
say that a weighted automatonA is determinizable
if the determinization algorithm halts for the inputA.
With a determinizable input, the algorithm outputs an
equivalent deterministic weighted automaton.

The twins propertyfor weighted automata char-
acterizes determinizable weighted automata under
some general conditions [Mohri, 1997]. LetA be
a weighted automaton over a weakly left-divisible
semiringK. Two statesq andq′ of A are said to be
siblings if there are stringsx andy in A∗ such that
bothq andq′ can be reached fromI by paths labeled
with x and there is a cycle atq and a cycle atq′ both
labeled withy. WhenK is a commutative and can-
cellative semiring, two sibling states are said to be
twinswhen for every stringy:

w[P (q, y, q)] = w[P (q′, y, q′)]. (14)

Springer Handbook on Speech Processing and Speech Communication 15

WEIGHTED-DETERMINIZATION(A)

1 i′ ← {(i, λ(i)) : i ∈ I}
2 λ′(i′)← 1
3 S ← {i′}
4 while S 6= ∅ do
5 p′ ← HEAD(S)
6 DEQUEUE(S)
7 for eachx ∈ i[E[Q[p′]]] do
8 w′ ←

⊕
{v ⊗ w : (p, v) ∈ p′, (p, x, w, q) ∈ E}

9 q′ ← {(q,
⊕{

w′−1 ⊗ (v ⊗ w) : (p, v) ∈ p′, (p, x, w, q) ∈ E
}
) :

q = n[e], i[e] = x, e ∈ E[Q[p′]]}
10 E′ ← E′ ∪ {(p′, x, w′, q′)}
11 if q′ 6∈ Q′ then
12 Q′ ← Q′ ∪ {q′}
13 if Q[q′] ∩ F 6= ∅ then
14 F ′ ← F ′ ∪ {q′}
15 ρ′(q′)←

⊕
{v ⊗ ρ(q) : (q, v) ∈ q′, q ∈ F}

16 ENQUEUE(S, q′)
17 return T ′

Figure 10: Pseudocode of the weighted determinization algorithm [Mohri, 1997].

A hasthe twins propertyif any two sibling states of
A are twins. Figure 11 shows a weighted automa-
ton over the tropical semiring that does not have the
twins property: states1 and2 can be reached by paths
labeled witha from the initial state and have cycles
with the same labelb, but the weights of these cycles
(3 and4) are different.

The following theorems relate the twins property
and weighted determinization [Mohri, 1997].

Theorem 1 LetA be a weighted automaton over the
tropical semiring. IfA has the twins property, thenA
is determinizable.

Theorem 2 Let A be a trim unambiguous weighted
automaton over the tropical semiring.4 ThenA is de-
terminizable iff it has the twins property.

There is an efficient algorithm for testing the
twins property for weighted automata [Allauzen and
Mohri, 2003]. Note that any acyclic weighted au-
tomaton over a zero-sum-free semiring has the twins
property and is determinizable.

4A weighted automaton is said to beunambiguousif for any
x ∈ Σ∗ it admits at most one accepting path labeled withx.

0

1a/1

2

a/2

b/3

3/0

c/5

b/4 d/6

Figure 11: Non-determinizable weighted automaton
over the tropical semiring. States 1 and 2 are non-
twin siblings.

The pre-determinizationalgorithm can be used
to make determinizable an arbitrary weighted trans-
ducer over the tropical semiring by inserting tran-
sitions labeled with special symbols [Allauzen and
Mohri, 2004]. The algorithm makes use of a general
twins property [Allauzen and Mohri, 2003] to insert
new transitions when needed to guarantee that the re-
sulting transducer has the twins property and thus is
determinizable.

Springer Handbook on Speech Processing and Speech Communication 16

3.4. Weight Pushing

As discussed in Section 2.5,weight pushingis nec-
essary in weighted minimization, and is also very
useful to improve search. Weight pushing can also
be used to test the equivalence of two weighted au-
tomata. Weight pushing is possible because the
choice of the distribution of the total weight along
each successful path of a weighted automaton does
not affect the total weight of each successful path,
and therefore preserves the definition of the automa-
ton as a weighted set (weighted relation for a trans-
ducer).

Let A be a weighted automaton over a zero-sum-
free and weakly left-divisible semiringK. For any
stateq ∈ Q, assume that the following sum is well
defined and inK:

d[q] =
⊕

π∈P (q,F)

(w[π]⊗ ρ[n[π]]). (15)

The valued[q] is the shortest-distancefrom q to
F [Mohri, 2002]. This is well defined for allq ∈ Q
whenK is a closed semiring. The weight-pushing al-
gorithm consists of computing each shortest-distance
d[q] and ofreweightingthe transition weights, initial
weights and final weights in the following way:

w[e]←d[p[e]]−1 ⊗ w[e]⊗ d[n[e]] if d[p[e]] 6= 0,
λ[i]←λ[i]⊗ d[i],
ρ[f]←d[f]−1 ⊗ ρ[f] if d[f] 6= 0,

(16)

where e is any transition,i any initial state, and
f any final state. Each of these operations can be
done in constant time. Therefore, reweighting can be
done in linear timeO(T⊗|A|) whereT⊗ denotes the
worst cost of an⊗-operation. The complexity of the
shortest-distances computation depends on the semir-
ing [Mohri, 2002]. For the tropical semiring,d[q] can
be computed using a standard shortest-distance algo-
rithm. The complexity is linear for acyclic automata,
O(|Q|+(T⊕+T⊗)|E|), whereT⊕ denotes the worst
cost of an⊕-operation. For general weighted au-
tomata over the tropical semiring, the complexity is
O(|E| + |Q| log |Q|).

For semirings like the probability semiring, a
generalization of the Floyd-Warshall algorithm for
computing all-pairs shortest-distances can be used
[Mohri, 2002]. Its complexity isΘ(|Q|3(T⊕ + T⊗ +

0/15

1

a/0

b/(1/15)

c/(5/15)

2

d/0

e/(9/15)

3/1

e/0
f/1

e/(4/9)

f/(5/9)

Figure 12: Weighted automatonC obtained fromA
of Figure 5(a) by weight pushing in the probability
semiring.

T∗)) where T∗ denotes the worst cost of the clo-
sure operation. The space complexity of these al-
gorithms isΘ(|Q|2). Therefore, the Floyd-Warshall
algorithm is impractical for automata with several
hundred million states or transitions, which arise in
large-vocabulary ASR. An approximate version of a
generic single-source shortest-distance algorithm can
be used instead to computed[q] efficiently [Mohri,
2002].

Speaking informally, the algorithm pushes the
weight on each path as much as possible towards
the initial states. Figures 5(a)-(b) show weight push-
ing on the tropical semiring, while Figure 12 shows
weight pushing for the same automaton but on the
probability semiring.

Note that ifd[q] = 0, then, sinceK is zero-sum-
free, the weight of all paths fromq to F is 0. LetA be
a weighted automaton over the semiringK. Assume
that K is closed and that the shortest-distancesd[q]
are all well defined and inK−

{
0
}

. In both cases, we
can use the distributivity over the infinite sums defin-
ing shortest distances. Lete′ (π′) denote the transi-
tion e (pathπ) after application of the weight pushing
algorithm.e′ (π′) differs frome (resp.π) only by its
weight. Letλ′ denote the new initial weight func-
tion, andρ′ the new final weight function. Then, the
following proposition holds [Mohri, 1997, 2005].

Proposition 1 Let B = (A, Q, I, F, E′, λ′, ρ′) be
the result of the weight pushing algorithm applied to
the weighted automatonA, then

1. the weight of a successful pathπ is unchanged
after weight pushing:

λ′[p[π′]]⊗ w[π′]⊗ ρ′[n[π′]] =
λ[p[π]]⊗ w[π] ⊗ ρ[n[π]].

(17)

Springer Handbook on Speech Processing and Speech Communication 17

2. the weighted automatonB is stochastic, that is,

∀q ∈ Q,
⊕

e′∈E′[q]

w[e′] = 1. (18)

These two properties of weight pushing are illus-
trated by figures 5(a)-(b) and 12: the total weight of
a successful path is unchanged after pushing; at each
state of the weighted automaton of Figure 5(b), the
minimum weight of the outgoing transitions is0, and
at each state of the weighted automaton of Figure 12,
the weights of outgoing transitions sum to1.

3.5. Minimization

Finally, we discuss in more detail the minimization
algorithm introduced in Section 2.5. A determinis-
tic weighted automaton is said to beminimal if there
is no other deterministic weighted automaton with
a smaller number of states that represents the same
mapping from strings to weights. It can be shown
that the minimal deterministic weighted automaton
has also the minimal number of transitions among all
equivalent deterministic weighted automata [Mohri,
1997].

Two states of a deterministic weighted automa-
ton are said to beequivalentif exactly the same set
of strings label the paths from these states to a fi-
nal state, and the total weight of the paths for each
string, including the final weight of the final state,
is the same. Thus, two equivalent states of a deter-
ministic weighted automaton can be merged without
affecting the function realized by that automaton. A
weighted automaton is minimal when it is not possi-
ble to create two distinct equivalent states after any
pushing of the weights along its paths.

As outlined in Section 2.5, the general minimiza-
tion algorithm for weighted automata consists of first
applying the weight pushing algorithm to normal-
ize the distribution of the weights along the paths of
the input automaton, and then of treating each pair
(label, weight) as a single label and applying clas-
sical (unweighted) automata minimization [Mohri,
1997]. The minimization of both unweighted and
weighted finite-state transducers can also be viewed
as instances of the algorithm presented here, but, for
simplicity, we will not discuss that further here. The
following theorem holds [Mohri, 1997].

Theorem 3 Let A be a deterministic weighted au-
tomaton over a semiringK. Assume that the condi-
tions of application of the weight pushing algorithm
hold. Then the execution of the following steps:

1. weight pushing,

2. (unweighted) automata minimization,

lead to a minimal weighted automaton equivalent to
A.

The complexity of automata minimization is linear
in the case of acyclic automataO(|Q| + |E|) and
is O(|E| log |Q|) in the general case. In view of
the complexity results of the previous section, for
the tropical semiring, the time complexity of the
weighted minimization algorithm is linearO(|Q| +
|E|) in the acyclic case andO(|E| log |Q|) in the gen-
eral case.

Figure 5 illustrates the algorithm in the tropical
semiring. AutomatonA cannot be further minimized
using the classical unweighted automata minimiza-
tion since no two states are equivalent in that ma-
chine. After weight pushing, automatonB has two
states, 1 and 2, that can be merged by unweighted
automaton minimization.

Figure 13 illustrates the minimization of an au-
tomaton defined over the probability semiring. Un-
like the unweighted case, a minimal weighted au-
tomaton is not unique, but all minimal weighted au-
tomata have the same graph topology, and only dif-
fer in the weight distribution along each path. The
weighted automataB′ andC′ are both minimal and
equivalent toA′. B′ is obtained fromA′ using the al-
gorithm described above in the probability semiring
and it is thus a stochastic weighted automaton in the
probability semiring.

For a deterministic weighted automaton, the⊕
operation can be arbitrarily chosen without affect-
ing the mapping from strings to weights defined by
the automaton, because a deterministic weighted au-
tomaton has at most one path labeled by any given
string. Thus, in the algorithm described in theorem 3,
the weight pushing step can be executed in any semir-
ing K

′ whose multiplicative operation matches that
of K. The minimal weighted automata obtained by
pushing the weights inK′ is also minimal inK, since
it can be interpreted as a (deterministic) weighted au-
tomaton overK.

Springer Handbook on Speech Processing and Speech Communication 18

0

1

a/1

b/2

c/3

2

d/4

e/5

3/1

e/.8
f/1

e/4

f/5

0/(459/5) 1

a/(1/51)

b/(2/51)
c/(3/51)

d/(20/51)
e/(25/51)

2/1e/(4/9)
f/(5/9)

0/25 1

a/.04

b/.08
c/.12
d/.90
e/1

2/1e/.8
f/1

(a) (b) (c)

Figure 13: Minimization of weighted automata. (a) WeightedautomatonA′ over the probability semiring.
(b) Minimal weighted automatonB′ equivalent toA′. (c) Minimal weighted automatonC′ equivalent toA′.

In particular,A′ can be interpreted as a weighted
automaton over the semiring(R+, max,×, 0, 1).
The application of the weighted minimization algo-
rithm to A′ in this semiring leads to the minimal
weighted automatonC′ of Figure 13(c).C′ is also
a stochasticweighted automaton in the sense that, at
any state, the maximum weight of all outgoing tran-
sitions is one.

In the particular case of a weighted automaton
over the probability semiring, it may be preferable to
use weight pushing in the (max,×)-semiring since
the complexity of the algorithm is then equivalent
to that of classical single-source shortest-paths al-
gorithms.5 The corresponding algorithm is a spe-
cial instance of a generic shortest-distance algorithm
[Mohri, 2002].

4. APPLICATIONS TO SPEECH
RECOGNITION

We now describe the details of the application of
weighted finite-state transducer representations and
algorithms to speech recognition as introduced in
Section 2.

4.1. Speech Recognition Transducers

As described in Section 2, we will represent vari-
ous models in speech recognition as weighted-finite

5This preference assumes the resulting distribution of weights
along paths is not important. As discussed in the next section,
the weight distribution that results from pushing in the (+,×)
semiring has advantages when the resulting automaton is used in a
pruned search.

state transducers. Four principal models are the
word-level grammarG, the pronunciation lexiconL,
the context-dependency transducerC, and the HMM
transducerH . We will discuss now the construction
of each these transducers. Since these will be com-
bined by composition and optimized by determiniza-
tion, we ensure they are efficient to compose and al-
low weighted determinization.

The word-level grammarG, whether hand-
crafted or learned from data, is typically a finite-state
model in speech recognition. Hand-crafted finite-
state models can be specified by regular expressions,
rules or directly as automata. Stochasticn-gram
models, common in large vocabulary speech recog-
nition, can be represented compactly by finite-state
models. For example, a bigram grammar has a state
for every wordwi and a transition from statew1 to
statew2 for every bigramw1w2 that is seen in the
training corpus. The transition is labeled withw2 and
has weight− log(p̂(w2|w1)), the negative log of the
estimated transition probability. The weight of a bi-
gramw1w3 that is not seen in the training data can
be estimated, for example, by backing-off to the un-
igram. That is, it has weight− log(β(w1) p̂(w3)),
wherep̂(w3) is the estimatedw3 unigram probabil-
ity andβ(w1) is thew1 backoff weight [Katz, 1987].
The unseen bigram could be represented as a tran-
sition from statew1 to w3 in the bigram automaton
just as a seen bigram. However, this would result in
O(|V |2) transitions in the automaton, where|V | is
the vocabulary size. A simple approximation, with
the introduction of abackoffstateb, avoids this. In
this model, an unseenw1w3 bigram is represented
as two transitions: anε-transition from statew1 to

Springer Handbook on Speech Processing and Speech Communication 19

� �

� �

� �

�

� � � � � � � � � � 	 � �

� �
�

�

� � � � � � � � � �

Figure 14: Word bigram transducer model: Seen bi-
gramw1w2 represented as aw2-transition from state
w1 to statew2; unseen bigramw1w3 represented as
anε-transition from statew1 to backoff stateb and as
aw3 transition from stateb to statew3.

stateb with weight − log(β(w1)) and a transition
from stateb to statew3 with label w3 and weight
− log(p̂(w3)). This configuration is depicted in Fig-
ure 14. This is an approximation since seen bigrams
may also be read as backed-off unigrams. However,
since the seen bigram typically has higher probabil-
ity than its backed-off unigram, it is usually a good
approximation. A similar construction is used for
higher-ordern-grams.

These grammars present no particular issues for
composition. However, the backoffε-transitions in-
troduce non-determinism in then-gram model. If
fully determinized withoutε-transitions, O(|V |2)
transitions would result. However, we can treat the
backoff ε labels as regular symbols during deter-
minization, avoiding the explosion in the number of
transitions.

As described in Section 2, we represent the pro-
nunciation lexiconL as the Kleene closure of the
union of individual word pronunciations as in Fig-
ure 2(b). In order for this transducer to efficiently
compose withG, the output (word) labels must be
placed on the initial transitions of the words; other
locations would lead to delays in the composition
matching, which could consume significant time and
space.

In general, transducerL is not determinizable.
This is clear in the presence of homophones. But,
even without homophones, it may not be deter-
minizable because the first word of the output string
might not be known before the entire phone string

is scanned. Such unbounded output delays makeL
non-determinizable.

To make it possible to determinizeL, we intro-
duce an auxiliary phone symbol, denoted#0, mark-
ing the end of the phonetic transcription of each
word. Other auxiliary symbols#1 . . . #k−1 are used
when necessary to distinguish homophones, as in the
following example:

r eh d #0 read
r eh d #1 red.

At mostP auxiliary phones are needed, whereP is
the maximum degree of homophony. The pronunci-
ation dictionary transducer with these auxiliary sym-
bols added is denoted bỹL. Allauzen et al. [2004b]
describe more general alternatives to the direct con-
struction ofL̃. In that work, so long asL correctly de-
fines the pronunciation transduction, it can be trans-
formed algorithmically to something quite similar to
L̃, regardless of the initial disposition of the output
labels or the presence of homophony.

As introduced in Section 2, we can represent
the mapping from context-independent phones to
context-dependentunits with a finite-state transducer,
with Figure 6 giving a transition of that transducer.
Figure 15 gives complete context-dependency trans-
ducers where just two hypothetical phonesx andy
are shown for simplicity. The transducer in Fig-
ure 15(a) is non-deterministic, while the one in
Figure 15(b) is deterministic. For illustration pur-
poses, we will describe the non-deterministic ver-
sion since it is somewhat simpler. As in Sec-
tion 2, we denote the context-dependent units as
phone/left context right context. Each state in Fig-
ure 15(a) encodes the knowledge of the previous and
next phones. State labels in the figure are pairs(a, b)
of the pasta and the futureb, with ε representing
the start or end of a phone string and∗ an unspec-
ified future. For instance, it is easy to see that the
phone stringxyx is mapped by the transducer to
x/ε y y/x x x/y ε via the unique state sequence
(ε, ∗)(x, y)(y, x)(x, ε). More generally, when there
aren context-independent phones, this triphonic con-
struction gives a transducer withO(n2) states and
O(n3) transitions. A tetraphonic construction would
give a transducer withO(n3) states andO(n4) tran-
sitions.

The following simple example shows the use

Springer Handbook on Speech Processing and Speech Communication 20

ε,* x,ε

x:x/ ε_ε

x,x

x:x/ ε_x

x,y

x:x/ ε_y

y,ε

y:y/ ε_ε

y,x

y:y/ ε_x

y,y

y:y/ ε_y x:x/x_ε

x:x/x_x

x:x/x_y

y:y/x_ ε

y:y/x_x

y:y/x_y

x:x/y_ε

x:x/y_x

x:x/y_y

y:y/y_ε

y:y/y_xy:y/y_y

(a)

ε,ε

ε,x

x:ε

ε,y

y:ε

x,ε
$:x/ε_ε

x,x

x:x/ε_x

x,y
y:x/ε_y

y,ε

$:y/ε_ε

y,x

x:y/ε_y

y,y
y:y/ε_y

$:x/x_ε

x:x/x_x
y:x/x_y

$:y/x_ε

x:y/x_x

y:y/x_y

$:x/y_εx:x/y_x

y:x/y_y

$:y/y_ε

x:y/y_x

y:y/y_y

(b)

Figure 15: Context-dependent triphone transducers: (a) non-deterministic, (b) deterministic.

Springer Handbook on Speech Processing and Speech Communication 21

(a)

0 1
x

2
y

3
x

4
x

5
y

(b)

0 1
x:x/e_y

2
y:y/x_x

3
x:x/y_x

4
x:x/x_y

5
y:y/x_e

(c)

0 1
x

5

y

2
y

4
x

3
x

y

y

(d)

0 1
x:x/e_y

2

y:y/x_e

3

y:y/x_x

4
x:x/y_x

5
x:x/x_y

y:y/x_e

6

y:y/x_y y:y/y_e

y:y/y_x

Figure 16: Context-dependent composition examples: (a) context-independent ‘string’, (b) context-
dependency applied to(a), (c) context-independent automaton, (d) context-dependency applied to(c).

Springer Handbook on Speech Processing and Speech Communication 22

of this context-dependency transducer. A context-
independent string can be represented by the obvi-
ous single-path acceptor as in Figure 16(a). This
can then be composed with the context-dependency
transducer in Figure 15.6 The result is the transducer
in Figure 16(b), which has a single path labeled with
the context-independent labels on the input side and
the corresponding context-dependent labels on the
output side.

The context-dependency transducer can be com-
posed with more complex transducers than the triv-
ial one in Figure 16(a). For example, composing the
context-dependency transducer with the transducer in
Figure 16(c) results in the transducer in Figure 16(d).
By definition of relational composition, this must
correctly replace the context-independent units with
the appropriate context-dependent units on all of its
paths. Therefore, composition provides a conve-
nient and general mechanism for applying context-
dependency to ASR transducers.

The non-determinism of the transducer in Fig-
ure 15(a) introduces a single symbol matching delay
in the composition with the lexicon. The determin-
istic transducer in Figure 15(b) composes without a
matching delay, which makes it the better choice in
applications. However, it introduces a single-phone
shift between a context-independent phone and its
corresponding context-dependent unit in the result.
This shift requires the introduction of a finalsubse-
quentialsymbol$ to pad out the context. In prac-
tice, this might be mapped to a silence phone or an
ε-transition.

If we let C represent a context-dependency trans-
ducer from context-dependent phones to context-
independent phones, then

C ◦ L ◦G

gives a transducer that maps from context-dependent
phones to word strings restricted to the grammar
G. Note thatC is the inverse of a transducer such
as in Figure 15; that is the input and output labels
have been exchanged on all transitions. For nota-
tional convenience, we adopt this form of the context-
dependency transducer when we use it in recognition
cascades.

6Before composition, we promote the acceptor in Figure 16(a)
to the corresponding transducer with identical input and output la-
bels.

For correctness, the context-dependency trans-
ducerC must also accept all paths containing the
auxiliary symbols added tõL to make it deter-
minizable. For determinizations at the context-
dependent phone level and distribution level, each
auxiliary phone must be mapped to a distinct context-
dependent-level symbol. Thus, self-loops are added
at each state ofC mapping each auxiliary phone to
a new auxiliary context-dependent phone. The aug-
mented context-dependency transducer is denoted by
C̃.

As we did for the pronunciation lexicon, we can
represent the HMM set asH , the closure of the union
of the individual HMMs (see Figure 1(c)). Note that
we do not explicitly represent the HMM-state self-
loops inH . Instead, we simulate those in the run-
time decoder. WithH in hand,

H ◦ C ◦ L ◦G

gives a transducer that maps from distributions to
word strings restricted toG.

Each auxiliary context-dependent phone iñC
must be mapped to a new distinct distribution name.
Self-loops are added at the initial state ofH with
auxiliary distribution name input labels and auxiliary
context-dependent phone output labels to allow for
this mapping. The modified HMM model is denoted
by H̃ .

We thus can use composition to combine all lev-
els of our ASR transducers into an integrated trans-
ducer in a convenient, efficient and general manner.
When these automata are statically provided, we can
apply the optimizations discussed in the next section
to reduce decoding time and space requirements. If
the transducer needs to be modified dynamically, for
example by adding the results of a database lookup to
the lexicon and grammar in an extended dialogue, we
adopt a hybrid approach that optimizes the fixed parts
of the transducer and uses lazy composition to com-
bine them with the dynamic portions during recogni-
tion [Riley et al., 1997, Mohri and Pereira, 1998].

4.2. Transducer Standardization

To optimize an integrated transducer, we use three
additional steps; (a) determinization, (b) minimiza-
tion, and (c) factoring.

Springer Handbook on Speech Processing and Speech Communication 23

4.2.1. Determinization

We use weighted transducer determinization at each
step of the composition of each pair of transducers.
The main purpose of determinization is to eliminate
redundant paths in the composed transducer, thereby
substantially reducing recognition time. In addition,
its use in intermediate steps of the construction also
helps to improve the efficiency of composition and to
reduce transducer size.

First, L̃ is composed withG and determinized,
yieldingdet(L̃ ◦G). The benefit of this determiniza-
tion is the reduction of the number of alternative tran-
sitions at each state to at most the number of distinct
phones at that state, while the original transducer may
have as many asV outgoing transitions at some states
whereV is the vocabulary size. For large tasks in
which the vocabulary has105 to 106 words, the ad-
vantages of this optimization are clear.

C̃ is then composed with the resulting transducer
and determinized. Similarly,̃H is composed with the
context-dependent transducer and determinized. This
last determinization increases sharing among HMM
models that start with the same distributions. At each
state of the resulting integrated transducer, there is at
most one outgoing transition labeled with any given
distribution name, reducing recognition time even
more.

In a final step, we use the erasing operationπε

that replace the auxiliary distribution symbols byε’s.
The complete sequence of operations is summarized
by the following construction formula:

N = πε(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G)))). (19)

where parentheses indicate the order in which the op-
erations are performed. The resultN is an integrated
recognition transducer that can be constructed even
in very large-vocabulary tasks and leads to a substan-
tial reduction in recognition time, as the experimental
results below show.

4.2.2. Minimization

Once we have determinized the integrated transducer,
we can reduce it further by minimization. The auxil-
iary symbols are left in place, the minimization algo-
rithm is applied, and then the auxiliary symbols are

removed:

N = πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))). (20)

Weighted minimization can be used in different
semirings. Both minimization in the tropical semir-
ing and minimization in the log semiring can be used
in this context. It is not hard to prove that the results
of these two minimizations have exactly the same
number of states and transitions and only differ in
how weight is distributed along paths. The difference
in weights arises from differences in the definition of
the weight pushing operation for different semirings.

Weight pushing in the log semiring has a very
large beneficial impact on the pruning efficacy of a
standard Viterbi beam search. In contrast, weight
pushing in the tropical semiring, which is based on
lowest weights between paths described earlier, pro-
duces a transducer that may slow down beam-pruned
Viterbi decoding many fold.

To push weights in the log semiring instead of the
tropical semiring, the potential function is the− log
of the total probability of paths from each state to the
super-final state rather than the lowest weight from
the state to the super-final state. In other words, the
transducer is pushed in terms of probabilities along
all future paths from a given state rather than the
highest probability over the single best path. By us-
ing − log probability pushing, we preserve a desir-
able property of the language model, namely that the
weights of the transitions leaving each state are nor-
malized as in a probabilistic automaton [Carlyle and
Paz, 1971]. We have observed that probability push-
ing makes pruning more effective [Mohri and Riley,
2001], and conjecture that this is because the acoustic
likelihoods and the transducer probabilities are now
synchronizedto obtain the optimal likelihood ratio
test for deciding whether to prune. We further con-
jecture that this reweighting is the best possible for
pruning. A proof of these conjectures will require a
careful mathematical analysis of pruning.

We have thusstandardizedthe integrated trans-
ducer in our construction — it is theuniquedetermin-
istic, minimal transducer for which the weights for all
transitions leaving any state sum to1 in probability,
up to state relabeling. If one accepts that these are
desirable properties of an integrated decoding trans-
ducer, then our methods obtain theoptimalsolution
among all integrated transducers.

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386

2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27
ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>

8
d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13

#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20
d:<eps>

21

#0:<eps>

<eps>:<eps>

24d:<eps>

25
#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15

f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16
l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0

6l:<eps>/0

7l:jill/0

8

m:jim/0.693
9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13
ih:<eps>/0 1/05

l:<eps>/0

l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8
r:<eps>/0

9l:<eps>/0

10iy:read/0

eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11

d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11
ih:<eps>/0 1/05

l:<eps>/0

l:jill/0.405

m:jim/1.098

6f:fled/2.284

7
r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805

iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammarG, (b) lexiconL̃, (c) L̃ ◦G, (d)det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

Springer Handbook on Speech Processing and Speech Communication 25

Figure 17 illustrates the steps in this construc-
tion. For simplicity, we consider a small toy grammar
and show the construction only down to the context-
independent phone level. Figure 17(a) shows the toy
grammarG and Figure 17(b) shows the lexicoñL.
Note the word labels on the lexicon are on the initial
transitions and that disambiguating auxiliary sym-
bols have been added at the word ends. Figure 17(c)
shows their compositioñL ◦ G. Figure 17(d) shows
the resulting determinization,det(L̃ ◦ G); observe
how phone redundancy is removed. Figures 17(e)-
(f) show the minimization step,min(det(L̃ ◦ G));
identical futures are combined. In Figure 17(e), the
minimization uses weight pushing over the tropical
semiring, while in Figure 17(f), the log semiring is
used.

4.2.3. Factoring

For efficiency reasons, our decoder has a sepa-
rate representation for variable-length left-to-right
HMMs, which we will call theHMM specification.
The integrated transducer of the previous section
does not take good advantage of this since, having
combined the HMMs into the recognition transducer
proper, the HMM specification consists of trivial one-
state HMMs. However, by suitablyfactoring the in-
tegrated transducer, we can again take good advan-
tage of this feature.

A path whose states other than the first and last
have at most one outgoing and one incoming tran-
sition is called achain. The integrated recognition
transducer just described may contain many chains
after the composition with̃H , and after determiniza-
tion. As mentioned before, we do not explicitly rep-
resent the HMM-state self-loops but simulate them
in the run-time decoder. The set of all chains inN is
denoted bychain(N).

The input labels ofN name one-state HMMs. We
can replace the input of each length-n chain inN by a
single label naming ann-state HMM. The same label
is used for all chains with the same input string. The
result of that replacement is a more compact trans-
ducer denoted byF . The factoring operation onN
leads to the following decomposition:

N = H ′ ◦ F, (21)

where H ′ is a transducer mapping variable-length

transducer states transitions
G 1,339,664 3,926,010
L ◦G 8,606,729 11,406,721
det(L ◦G) 7,082,404 9,836,629
C ◦ det(L ◦G)) 7,273,035 10,201,269
det(H ◦ C ◦ L ◦G) 18,317,359 21,237,992
F 3,188,274 6,108,907
min(F) 2,616,948 5,497,952

Table 2: Size of the first-pass recognition transducers
in the NAB40, 000-word vocabulary task.

left-to-right HMM state distribution names ton-state
HMMs. SinceH ′ can be separately represented in
the decoder’s HMM specification, the actual recog-
nition transducer is justF .

Chain inputs are in fact replaced by a single label
only when this helps to reduce the size of the trans-
ducer. This can be measured by defining thegain of
the replacement of an input stringσ of a chain by:

G(σ) =
∑

π∈chain(N),i[π]=σ

|σ| − |o[π]| − 1, (22)

where|σ| denotes the length of the stringσ, i[π] the
input label ando[π] the output label of a pathπ. The
replacement of a stringσ helps reduce the size of the
transducer ifG(σ) > 0.

Our implementation of the factoring algorithm al-
lows one to specify the maximum numberr of re-
placements done (ther chains with the highest gain
are replaced), as well as the maximum length of the
chains that are factored.

Factoring does not affect recognition time. It can
however significantly reduce the size of the recogni-
tion transducer. We believe that even better factoring
methods may be found in the future.

4.2.4. Experimental Results – First-Pass Transduc-
ers

We used the techniques discussed in the previous sec-
tions to build many recognizers. To illustrate effec-
tiveness of the techniques and explain some practi-
cal details, we discuss here an integrated, optimized
recognition transducer for a40, 000-word vocabulary

Springer Handbook on Speech Processing and Speech Communication 26

transducer × real-time
C ◦ L ◦G 12.5
C ◦ det(L ◦G) 1.2
det(H ◦ C ◦ L ◦G) 1.0
min(F) 0.7

transducer × real-time
C ◦ L ◦G .18
C ◦ det(L ◦G) .13
C ◦min(det(L ◦G)) .02

(a) (b)

Table 3: (a) Recognition speed of the first-pass transducersin the NAB40, 000-word vocabulary task at 83%
word accuracy. (b) Recognition speed of the second-pass transducers in the NAB160, 000-word vocabulary
task at 88% word accuracy.

North American Business News (NAB) task. The
following models are used:

• Acoustic model of 7,208 distinct HMM states,
each with an emission mixture distribution of up
to twelve Gaussians.

• Triphonic context-dependency transducerC with
1,525 states and 80,225 transitions.

• 40, 000-word pronunciation dictionaryL with an
average of 1.056 pronunciations per word and an
out-of-vocabulary rate of 2.3% on the NAB Eval
’95 test set.

• Trigram language modelG with 3,926,010 tran-
sitions built by Katz’s back-off method with fre-
quency cutoffs of 2 for bigrams and 4 for trigrams,
shrunk with an epsilon of40 using the method
of [Seymore and Rosenfeld, 1996], which retained
all the unigrams, 22.3% of the bigrams and 19.1%
of the trigrams. Perplexity on the NAB Eval ’95
test set is 164.4 (142.1 before shrinking).

We applied the transducer optimization steps as
described in the previous section except that we ap-
plied the minimization and weight pushing after fac-
toring the transducer. Table 2 gives the size of the
intermediate and final transducers.

Observe that the factored transducermin(F) has
only about40% more transitions thanG. The HMM
specificationH ′ consists of 430,676 HMMs with an
average of7.2 states per HMM. It occupies only
about10% of the memory ofmin(F) in the decoder
(due to the compact representation possible from its
specialized topology). Thus, the overall memory re-
duction from factoring is substantial.

We used these transducers in a simple, general-
purpose, one-pass Viterbi decoder applied to the
DARPA NAB Eval ’95 test set. Table 4.2.4(a) shows
the recognition speed on a Compaq Alpha 21264
processor for the various optimizations, where the
word accuracy has been fixed at 83.0%. We see that
the fully-optimized recognition transducer,min(F),
substantially speeds up recognition.

To obtain improved accuracy, we might widen the
decoder beam7, use a larger vocabulary, or use a less
shrunken language model. Figure 18(a) shows the af-
fect of vocabulary size (with a bigram LM and opti-
mization only to theL◦G level). We see that beyond
40,000 words, there is little benefit to increasing the
vocabulary either in real-time performance or asymp-
totically. Figure 18(b) shows the affect of the lan-
guage model shrinking parameter. These curves were
produced by Stephan Kanthak of RWTH using our
transducer construction, but RWTH’s acoustic mod-
els, as part of a comparison with lexical tree meth-
ods [Kanthak et al., 2002]. As we can see, decreasing
the shrink parameter from 40 as used above to 10 has
a significant affect, while further reducing it to 5 has
very little affect. An alternative to using a larger LM
is to use a two-pass system to obtain improved accu-
racy, as described in the next section. This has the
advantage it allows quite compact shrunken bigram
LMs in the first-pass, while the second pass performs
as well as the larger-model single pass systems.

While our examples here have been on NAB,
we have also applied these methods to Broadcast
News [Saraclar et al., 2002], Switchboard, and vari-
ous AT&T-specific large-vocabulary tasks [Allauzen
et al., 2004b]. In our experience, fully-optimized and

7These models have an asymptotic wide-beam accuracy of
85.3%.

Springer Handbook on Speech Processing and Speech Communication 27

factored recognition transducers provide very fast de-
coding while often having well less than twice the
number of transitions as their word-level grammars.

4.2.5. Experimental Results – Rescoring Transduc-
ers

The weighted transducer approach is also easily ap-
plied to multipass recognition. To illustrate this, we
now show how to implement lattice rescoring for a
160, 000-word vocabulary NAB task. The following
models are used to build lattices in a first pass:

• Acoustic model of 5,520 distinct HMM states,
each with an emission mixture distribution of up
to four Gaussians.

• Triphonic context-dependency transducerC with
1,525 states and 80,225 transitions.

• 160, 000-word pronunciation dictionaryL with an
average of 1.056 pronunciations per word and an
out-of-vocabulary rate of 0.8% on the NAB Eval
’95 test set.

• Bigram language modelG with 1,238,010 tran-
sitions built by Katz’s back-off method with fre-
quency cutoffs of 2 for bigrams. It is shrunk with
an epsilon of160 using the method of [Seymore
and Rosenfeld, 1996], which retained all the un-
igrams and 13.9% of the bigrams. Perplexity on
the NAB Eval ’95 test set is 309.9.

We used an efficient approximate lattice genera-
tion method [Ljolje et al., 1999] to generate word lat-
tices. These word lattices are then used as the ‘gram-
mar’ in a second rescoring pass. The following mod-
els are used in the second pass:

• Acoustic model of 7,208 distinct HMM states,
each with an emission mixture distribution of up
to twelve Gaussians. The model is adapted to each
speaker using a single full-matrix MLLR trans-
form [Leggetter and Woodland, 1995].

• Triphonic context-dependency transducerC with
1,525 states and 80,225 transitions.

• 160, 000-word stochastic, TIMIT-trained,
multiple-pronunciation lexiconL [Riley et al.,
1999].

• 6-gram language modelG with 40,383,635 tran-
sitions built by Katz’s back-off method with fre-
quency cutoffs of 1 for bigrams and trigrams, 2
for 4-grams, and 3 for 5-grams and 6-grams. It
is shrunk with an epsilon of5 using the method
of Seymore and Rosenfeld, which retained all the
unigrams, 34.6% of the bigrams, 13.6% of the
trigrams, 19.5% of the 4-grams, 23.1% of the 5-
grams, and 11.73% of the 6-grams. Perplexity on
the NAB Eval ’95 test set is 156.83.

We applied the transducer optimization steps de-
scribed in the previous section but only to the level of
L ◦G (whereG is each lattice). Table 4.2.4(b) shows
the speed of second-pass recognition on a Compaq
Alpha 21264 processor for these optimizations when
the word accuracy is fixed at 88.0% on the DARPA
Eval ’95 test set.8 We see that the optimized recogni-
tion transducers again substantially speed up recog-
nition. The median number of lattice states and arcs
is reduced by∼ 50% by the optimizations.

5. CONCLUSION

We presented an overview of weighted finite-state
transducer methods and their application to speech
recognition. The methods are quite general, and can
also be applied in other areas of speech and language
processing, including information extraction, speech
synthesis [Sproat, 1997, Allauzen et al., 2004a],
phonological and morphological analysis [Kaplan
and Kay, 1994, Karttunen, 1995], in optical char-
acter recognition, biological sequence analysis, and
other pattern matching and string processing applica-
tions [Crochemore and Rytter, 1994], and in image
processing [Culik II and Kari, 1997], just to mention
some of the most active application areas.

Acknowledgments

We thank Andrej Ljolje for providing the acoustic models
and Don Hindle and Richard Sproat for providing the lan-
guage models used in our experiments.

The first author’s work was partially funded by the
New York State Office of Science Technology and Aca-
demic Research (NYSTAR). The second author’s work was

8The recognition speed excludes the offline transducer con-
struction time.

Springer Handbook on Speech Processing and Speech Communication 28

1

1

1
1

1

x real-time

w
or

d
ac

cu
ra

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

60
65

70
75

80
85

2

2

2
2

2

3

3

3
3

3

4

4

4
4

4

11

12

13

14

15

16

17

18

19

20

0 0.5 1 1.5 2 2.5 3 3.5 4

W
E

R

RTF

"5"
"10"
"40"

Figure 18: (a) Effect of vocabulary size: NAB bigram recognition results for vocabularies of (1) 10,000
words, (2) 20,000 words, (3) 40,000 words, and (4) 160,000 words (LG Optimized Only). (b) NAB Eval
’95 recognition results for the Seymore & Rosenfeld shrink factors of 5, 10, and 40 (thanks to RWTH; uses
RWTH acoustic models).

partly funded by NSF grants EIA 0205456, EIA 0205448,
and IIS 0428193.

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-
man. The design and analysis of computer algo-
rithms. Addison Wesley, Reading, MA, 1974.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers, Principles, Techniques and Tools. Ad-
dison Wesley, Reading, MA, 1986.

Cyril Allauzen and Mehryar Mohri. An Optimal Pre-
Determinization Algorithm for Weighted Trans-
ducers. Theoretical Computer Science, 328(1-2):
3–18, November 2004.

Cyril Allauzen and Mehryar Mohri. Efficient Al-
gorithms for Testing the Twins Property.Journal
of Automata, Languages and Combinatorics, 8(2):
117–144, 2003.

Cyril Allauzen, Mehryar Mohri, and Michael Riley.
Statistical Modeling for Unit Selection in Speech
Synthesis. In42nd Meeting of the Association
for Computational Linguistics (ACL 2004), Pro-
ceedings of the Conference, Barcelona, Spain, July
2004a.

Cyril Allauzen, Mehryar Mohri, Brian Roark, and
Michael Riley. A Generalized Construction
of Integrated Speech Recognition Transducers.
In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing
(ICASSP 2004), Montréal, Canada, May 2004b.

Jean Berstel.Transductions and Context-Free Lan-
guages. Teubner Studienbucher, Stuttgart, 1979.

Jean Berstel and Christophe Reutenauer.Rational
Series and Their Languages. Springer-Verlag,
Berlin-New York, 1988.

Jack W. Carlyle and Azaria Paz. Realizations by
Stochastic Finite Automaton.Journal of Computer
and System Sciences, 5:26–40, 1971.

Maxime Crochemore and Wojciech Rytter.Text Al-
gorithms. Oxford University Press, 1994.

Karel Culik II and Jarkko Kari. Digital Images and
Formal Languages. In Grzegorz Rozenberg and
Arto Salomaa, editors,Handbook of Formal Lan-
guages, pages 599–616. Springer, 1997.

Samuel Eilenberg.Automata, Languages and Ma-
chines, volume A-B. Academic Press, 1974-1976.

John E. Hopcroft and Jeffrey D. Ullman.Introduc-
tion to Automata Theory, Languages, and Compu-
tation. Addison Wesley, Reading, MA, 1979.

Springer Handbook on Speech Processing and Speech Communication 29

Stephan Kanthak, Hermann Ney, Michael Riley, and
Mehryar Mohri. A Comparison of Two LVR
Search Optimization Techniques. InProceedings
of the International Conference on Spoken Lan-
guage Processing 2002 (ICSLP ’02), Denver, Col-
orado, September 2002.

Ronald M. Kaplan and Martin Kay. Regular Mod-
els of Phonological Rule Systems.Computational
Linguistics, 20(3), 1994.

Lauri Karttunen. The Replace Operator. In33rd

Meeting of the Association for Computational Lin-
guistics (ACL 95), Proceedings of the Conference,
MIT, Cambridge, Massachussetts. ACL, 1995.

Slava M. Katz. Estimation of probabilities from
sparse data for the language model component of
a speech recogniser.IEEE Transactions on Acous-
tic, Speech, and Signal Processing, 35(3):400–
401, 1987.

Werner Kuich and Arto Salomaa. Semirings,
Automata, Languages. Number 5 in EATCS
Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, Germany, 1986.

Chris Leggetter and Phil Woodland. Maximum Like-
lihood Linear Regession for Speaker Adaptation
of Continuous Density HMMs.Computer Speech
and Language, 9(2):171–186, 1995.

Daniel J. Lehmann. Algebraic Structures for Tran-
sitive Closures.Theoretical Computer Science, 4:
59–76, 1977.

Andrej Ljolje, Fernando Pereira, and Michael Riley.
Efficient General Lattice Generation and Rescor-
ing. In Proceedings of the European Conference
on Speech Communication and Technology (Eu-
rospeech ’99), Budapest, Hungary, 1999.

Mehryar Mohri. Semiring Frameworks and Algo-
rithms for Shortest-Distance Problems.Journal
of Automata, Languages and Combinatorics, 7(3):
321–350, 2002.

Mehryar Mohri. Finite-State Transducers in Lan-
guage and Speech Processing.Computational Lin-
guistics, 23(2), 1997.

Mehryar Mohri. Statistical Natural Language Pro-
cessing. In M. Lothaire, editor,Applied Combi-
natorics on Words. Cambridge University Press,
2005.

Mehryar Mohri and Mark-Jan Nederhof. Reg-
ular Approximation of Context-Free Grammars
through Transformation. In Jean claude Junqua
and Gertjan van Noord, editors,Robustness in
Language and Speech Technology, pages 153–163.
Kluwer Academic Publishers, The Netherlands,
2001.

Mehryar Mohri and Fernando C.N. Pereira. Dynamic
Compilation of Weighted Context-Free Gram-
mars. In36th Annual Meeting of the ACL and
17th International Conference on Computational
Linguistics, volume 2, pages 891–897, 1998.

Mehryar Mohri and Michael Riley. Integrated
Context-Dependent Networks in Very Large Vo-
cabulary Speech Recognition. InProceedings of
the 6th European Conference on Speech Commu-
nication and Technology (Eurospeech ’99), Bu-
dapest, Hungary, 1999.

Mehryar Mohri and Michael Riley. A Weight
Pushing Algorithm for Large Vocabulary Speech
Recognition. InProceedings of the 7th Euro-
pean Conference on Speech Communication and
Technology (Eurospeech ’01), Aalborg, Denmark,
September 2001.

Mehryar Mohri and Michael Riley. Network Opti-
mizations for Large Vocabulary Speech Recogni-
tion. Speech Communication, 25(3), 1998.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. Weighted Automata in Text and Speech Pro-
cessing. InECAI-96 Workshop, Budapest, Hun-
gary. ECAI, 1996.

Mehryar Mohri, Michael Riley, Don Hindle, Andrej
Ljolje, and Fernando Pereira. Full Expansion of
Context-Dependent Networks in Large Vocabulary
Speech Recognition. InProceedings of the In-
ternational Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’98), Seattle, Wash-
ington, 1998.

Springer Handbook on Speech Processing and Speech Communication 30

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. The Design Principles of a Weighted Finite-
State Transducer Library.Theoretical Computer
Science, 231:17–32, January 2000.

Mark-Jan Nederhof. Practical Experiments with Reg-
ular Approximation of Context-free Languages.
Computational Linguistics, 26(1), 2000.

Stefan Ortmanns, Hermann Ney, and A. Eiden.
Language-Model Look-Ahead for Large Vocabu-
lary Speech Recognition. InProceedings of the In-
ternational Conference on Spoken Language Pro-
cessing (ICSLP’96), pages 2095–2098. University
of Delaware and Alfred I. duPont Institute, 1996.

Fernando Pereira and Michael Riley.Finite State
Language Processing, chapter Speech Recogni-
tion by Composition of Weighted Finite Automata.
The MIT Press, 1997.

Fernando Pereira and Rebecca Wright. Finite-State
Approximation of Phrase-Structure Grammars. In
E. Roche and Y. Schabes, editors,Finite-State
Language Processing, pages 149–173. MIT Press,
1997.

Dominique Revuz. Minimisation of Acyclic Deter-
ministic Automata in Linear Time. Theoretical
Computer Science, 92:181–189, 1992.

Michael Riley, Fernando Pereira, and Mehryar
Mohri. Transducer Composition for Context-
Dependent Network Expansion. InProceedings of
Eurospeech’97. Rhodes, Greece, 1997.

Michael Riley, William Byrne, Michael Finke, San-
jeev Khudanpur, Andrej Ljolje, John McDonough,
Harriet Nock, Murat Saraclar, Charles Wooters,
and George Zavaliagkos. Stochastic pronuncia-
tion modelling form hand-labelled phonetic cor-
pora.Speech Communication, 29:209–224, 1999.

Arto Salomaa and Matti Soittola. Automata-
Theoretic Aspects of Formal Power Series.
Springer-Verlag, New York, 1978.

Muret Saraclar, Michael Riley, Enrico Bocchieri, and
Vincent Goffin. Towards automatic closed cap-
tioning : Low latency real time broadcast news
transcription. InProceedings of the International
Conference on Spoken Language Processing (IC-
SLP’02), 2002.

Kristie Seymore and Roni Rosenfeld. Scalable Back-
off Language Models. InProceedings of ICSLP,
Philadelphia, Pennsylvania, 1996.

Richard Sproat. Multilingual Text Analysis for Text-
to-Speech Synthesis.Journal of Natural Language
Engineering, 2(4):369–380, 1997.

Index
acceptor

weighted, 2
algorithm

composition, 4, 11
determinization, 6, 13, 23
equivalence, 6
factoring, 25
intersection, 13
minimization, 7, 17, 23
projection, 11
reweighting, 8
shortest-distance, 8, 16, 18
weight-pushing, 8, 16

automaton
deterministic, 6
minimal, 17
stochastic, 17, 18
weighted, 11

chain, 25
composition, 4, 11
cycle, 11

epsilon, 11

determinization, 6, 13, 23

equivalence
acceptor, 6
transducer, 6

factoring, 25

HMM specification, 25

intersection, 13

language model, 18
backoff, 18
shrunken, 26

lazy evaluation, 4
lexicon

pronunciation, 9, 19

minimization, 7, 17, 23

path, 11
product

Hadamard, 13
projection, 11
pushing

weight, 8, 16

reweighting, 8

semiring
Boolean, 10
cancellative, 10
closed, 10
commutative, 10
log, 6, 10
probability, 10
string, 6
tropical, 6, 10
weakly left-divisible, 10
zero-sum-free, 10

shortest-distance, 8, 16, 18
speech recognition

first-pass, 25
real-time, 25
rescoring, 27
second-pass, 27

symbols
auxiliary, 10, 19

transducer
context-dependency, 9, 19
deterministic, 13
regulated, 11
speech recognition, 8, 18
standardized, 23
subsequential, 13
trim, 11
weighted, 11

twins property, 14

Viterbi approximation, 10

WEIGHTED-COMPOSITION, 12
WEIGHTED-DETERMINIZATION, 15

31

