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Bidirectional Recurrent Neural Networks

Mike Schuster and Kuldip K. PaliwaMember, IEEE

Abstract—In the first part of this paper, a regular recurrent  that, at least theoretically, is able to use all available input
neural network (RNN) is extended to a bidirectional recurrent jnformation to predict a point in the output space.
neural network (BRNN). The BRNN can be trained without  \1any ANN structures have been proposed in the literature

the limitation of using input information just up to a preset to deal with ti . it Mulil i
future frame. This is accomplished by training it simultaneously ©0 d€al with ime varying pafterns. Muftiiayer perceptrons

in positive and negative time direction. Structure and training (MLP’s) have the limitation that they can only deal with
procedure of the proposed network are explained. In regression static data patterns (i.e., input patterns of a predefined dimen-
and classification experiments on artificial data, the proposed sionality), which requires definition of the size of the input
structure gives better results than other approaches. For real window in advance. Waibeit al.[16] have pursued time delay

lassification riments for phonemes from the TIMIT h
3§Zb§saesz'h'§3vt'?he i?rﬁel tgnésengy phonemes from the neural networks (TDNN'’s), which have proven to be a useful

In the second part of this paper, it is shown how the proposed improvement over regular MLP’s in many applications. The
bidirectional structure can be easily modified to allow efficient basic idea of a TDNN is to tie certain parameters in a regular
estimation of the conditional posterior probability of complete MLP structure without restricting the learning capability of the
symbol sequences without making any explicit assumption about ANN too much. Recurrent neural networks (RNN's) [5], [8],
the shape of the distribution. For this part, experiments on real . . . .
data are reported. [12], [13], [15] p_rowde anoth_er alterna_tlve for mcor_p(_)ratmg

temporal dynamics and are discussed in more detail in a later
section.

In this paper, we investigate different ANN structures for
I. INTRODUCTION incorporating temporal dynamics. We conduct a number of

experiments using both artificial and real-world data. We show
the superiority of RNN’s over the other structures. We then
point out some of the limitations of RNN’s and propose a
ANY classification and regression problems of engimodified version of an RNN called a bidirectional recurrent
neering interest are currently solved with statisticaleural network, which overcomes these limitations.
approaches using the principle of “learning from examples.”
For a certairmodelwith a givenstructureinferred from the B. Technical
prior knowledge about the problem and characterized by aConsider a (time) sequence of input data vectors
number ofparametersthe aim is to estimate these parameters
accurately and reliably using a finite amount of trainipg data. x{ = {x1, X2, X3, - .., X7—1, X7}
In general, the parameters of the model are determined by a
supervised training process, whereas the structure of the mogiedl a sequence of corresponding output data vectors
is defined in advance. Choosing a proper structure for the
model is often the only way for the designer of the system

to put in prior knowledge about the solution of the problemyyith neighboring data-pairs (in time) being somehow statisti-
||_1troduct|on) are one group of models that take the prlncw_)hhta, the aim is to learn the rules to predict the output data
infer the knowledge from the data” to an extreme. In thigjven the input data. Inputs and outputs can, in general, be
paper, we are interested in studying ANN structures for oR@ntinuous and/or categorical variables. When outputs are
particular class.of problems that are represented by tempatghtinuous, the problem is known asregression problem
sequences of input-output data pairs. For these typesa@fj when they are categorical (class labels), the problem is
problems, which occur, for example, in speech recognitiognown as aclassification problemIn this paper, the term
time series prediction, dynamic control systems, efc., one gedictionis used as a general term that includegression
the challenges is to choose an appropriate network structdygy classification
1) Unimodal RegressionFor unimodal regression dunc-

Manuscript received June 5, 1997. The associate editor coordinating ti@n approximation the components of the output vectors are
I:view of this paper and approving it for publication was Prof. Jeng-Nerggntinuous variables. The ANN parameters are estimated to
wang. L . L L L

M. Schuster is with the ATR Interpreting Telecommunications Researmax!mlz_e some predefined objective Cmenon_ (e_.g.,_maX|m|ze
Laboratory, Kyoto, Japan. the likelihood of the output data). When the distribution of the

K. K. Paliwal is with the ATR Interpreting Telecommunications ResearCérrorS between the desuﬂed and the estlmated Output vectors
Laboratory, Kyoto, Japan, on leave from the School of Microelectronic d be G . ith d a fixed global
Engineering, Griffith University, Brisbane, Australia. IS assumed to be .aUSS'an W'_t z_ero me‘.”m _an a hixed globa

Publisher Item Identifier S 1053-587X(97)08055-0. data-dependent variance, the likelihood criterion reduces to the

Index Terms—Recurrent neural networks.

A. General

Y{ = {Yb Y2,¥3, ", Y11, YT}

1053-587X/97$10.00] 1997 IEEE



2674 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

. OUTPUT NEURON GROUP

HIDDEN (STATE) NEURON
GROUP

7
/A INPUTS

/ GROUP OF WEIGHTS WITH
INFORMATION FLOW

DELAY LINE

t-1 t
(@) (b)

Fig. 1. General structure of a regular unidirectional RNN shown (a) with a delay line and (b) unfolded in time for two time steps.

convenient Euclidean distance measure between the desired for this part are conducted for artificial toy data as well
and the estimated output vectors or tmean-squared-error as for real data.

criterion, which has to be minimized during training [2]. It < Estimation of the conditional probability of a complete
has been shown by a number of researchers [2], [9] that sequence of classes of lendthusing all available input

neural networks can estimate the conditional average of the information [i.e., computePr (ci, ¢z, -+, er|x¥)]. In
desired output (or target) vectors at their network outputs, i.e., this case, the outputs are treated as being statistically
¥+ = E[y:|x¥], where E[-] is an expectation operator. dependent, which makes the estimation more difficult and

2) Classification: In the case of a classification problem, requires a slightly different network structure than the one
one seeks the most probable class out of a given pool of used in the first part. For this part, results of experiments
K classes for every time framg given an input vector for real data are reported.
sequencex?. To make this kind of problem suitable to be
solved by an ANN, the categorical variables are usually coded
as vectors as follows. Consider thatis the desired class
label for the frame at timé. Then, construct an output vector
y: such that itsith component is one and other componen®8. Recurrent Neural Networks

are zero. The output vector sequencg constructed in this  RNN's provide a very elegant way of dealing with (time)
manner along with the input vector sequeneg can be sequential data that embodies correlations between data points
used to train the network under some optimality criterioRhat are close in the sequence. Fig. 1 shows a basic RNN
usually the cross-entropy criterion [2], [9], which results fromrchitecture with a delay line and unfolded in time for two

a maximum likelihood estimation assuming a multinomiaime steps. In this structure, the input vectassare fed one
output distribution. It has been shown [3], [6], [9] that theyt a time into the RNN. Instead of using a fixed number of
ith network output at each time poiaitcan be interpreted asinput vectors as done in the MLP and TDNN structures, this
an estimate of the conditional posterior probability of clasgrchitecture can make use of all the available input information

Il. PREDICTION ASSUMING INDEPENDENT OQUTPUTS

membership §*) = Pr(C, = k|x¥)] for classi, with the up to the current time frame. (i.e., {x;, t = 1,2, -+, t.})
quality of the estimate depending on the size of the training predicty, . How much of this information is captured by
data and the complexity of the network. a particular RNN depends on its structure and the training

For some applications, it is not necessary to estimate tigorithm. An illustration of the amount of input information
conditional posterior probabilitP’r (C; = k|x{') of a single used for prediction with different kinds of NN's is given in
class given the sequence of input vectors but the conditiorrag. 2.

posterior probabilityPr (c1, ¢z, - - -, er|x]) of a sequencef Future input information coming up later thanis usually

classes given the sequence of input vectors. also useful for prediction. With an RNN, this can be partially
achieved by delaying the output by a certain numbé&v/dime

C. Organization of the Paper frames to include future information up to._ ., to predict

This paper is organized in two parts. Given a series of pair&é (Fig. 2")' r‘\rheore.}ucatlly,fj\/[ cogldf be made very large FO
input/output vectorg (x;, y:), t = 1, 2, ---, T}, we want to capture all the available future information, but in practice,

train bidirectional recurrent neural networks to perform thi 1 found that pr_ed|ct|on rgsults drop i/ is top 'afg_e- A
following tasks. possible explanation for this could be that with risidd,

« Unimodal regression (i.e., compue = Efy:[xT]) or the modeling power of the RNN is i.ncreasingly concentrated
- ) ) t_ 1 o on remembering the input information up %9 ., for the
classification [i.e., computgj;™ = Pr(C: = k|X{) prediction ofy,., leaving less modeling power for combining
. every output cllas?k anld.demde the cIa;s using thgpe prediction knowledge from different input vectors.
maximum a posteriori d.ec'|S|on .rule]. In this case, .the While delaying the output by some frames has been used
outputs are treated statistically independent. Experimerig:cessfully to improve results in a practical speech recogni-
1Here, we want to make a distinction betwe@nande,. C' is a categorical 110N System [12], which was also confirmed by the experiments
random variable, and; is its value. conducted here, the optimal delay is task dependent and has to
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Fig. 2. Visualization of the amount of input information used for prediction by different network structures.
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Fig. 3. General structure of the bidirectional recurrent neural network (BRNN) shown unfolded in time for three time steps.

be found by the “trial and error” error method on a validatiodirection (backward states). Outputs from forward states are
test set. Certainly, a more elegant approach would be desirablet connected to inputs of backward states, and vice versa.
To use all available input information, it is possible to us&his leads to the general structure that can be seen in Fig. 3,
two separate networks (one for each time direction) and theshere it is unfolded over three time steps. It is not possible to
somehow merge the results. Both networks can then be callisiplay the BRNN structure in a figure similar to Fig. 1 with
experts for the specific problem on which the networks atkee delay line since the delay would have to be positive and
trained. One way ofmerging the opinions of different expertsmegative in time. Note that without the backward states, this
is to assume the opinions to be independent, which leadssteucture simplifies to a regular unidirectional forward RNN,
arithmetic averaging for regression and to geometric averagiag shown in Fig. 1. If the forward states are taken out, a
(or, alternatively, to an arithmetic averaging in the log domaimggular RNN with a reversed time axis results. With both time
for classification. These merging procedures are referred dections taken care of in the same network, input information
as linear opinion poolingand logarithmic opinion pooling in the past and the future of the currently evaluated time frame
respectively [1], [7]. Although simple merging of networkcan directly be used to minimize the objective function without
outputs has been applied successfully in practice [14], it tise need for delays to include future information, as for the
generally not clear how to merge network outputs in an optimagular unidirectional RNN discussed above.
way since different networks trained on the same data can n@) Training: The BRNN can principally be trained with
longer be regarded as independent. the same algorithms as a regular unidirectional RNN because
there are no interactions between the two types of state
S neurons and, therefore, can be unfolded into a general feed-
B. Bidirectional Recurrent Neural Networks forward network. However, if, for example, any form of
To overcome the limitations of a regular RNN outlinedack-propagation through time (BPTT) is used, the forward
in the previous section, we propose a bidirectional recurreand backward pass procedure is slightly more complicated
neural network (BRNN) that can be trained using all availableecause the update of state and output neurons can no longer
input information in the past and future of a specific timbe done one at a time. If BPTT is used, the forward and
frame. backward passes over the unfolded BRNN over time are done
1) Structure: The idea is to split the state neurons of almost in the same way as for a regular MLP. Some special
regular RNN in a part that is responsible for the positiveeatment is necessary only at the beginning and the end of
time direction (forward states) and a part for the negative tintlee training data. The forward state inputstat 1 and the
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backward state inputs @t= 7" are not known. Setting these TABLE |
could be made part of the learning process, but here, they AF?CEJ:EL;E;EZES\ZEL?;ITOE%?S%S;AEEESEEETS
are set arbitrarily to a fixed value (0.5). In addition, the local
state derivatives at = 7" for the forward states and at= 1 STRUCTURE STATES SHIFT-
for the backward states are not known and are set here to (FOR/BACK) RANGE
zero, assuming that the information beyond that point is not RNN-FOR 2/0 -5 to 420
important for the current update, which is, for the boundaries, RNN-BACK 0/2 5 to -20

. S MERGE 2/2 -2/42 to +10/-10
certainly the case. The training procedure for the unfolded BRNY 2/2 Hone

bidirectional network over time can be summarized as follows.
1) FORWARD PASS
Run all input data for one time slice< ¢ < 7" through experiments, the output data is mapped to two classes, with
the BRNN and determine all predicted outputs. class 0 for all output values below (or equal to) 0.5 and class
a) Do forward pass just for forward states (frqun: 1 1 for all output values above 0.5, giving approximately 59%

tot = 7') and backward states (from= T'tot = 1). Of the data to class 0 and 41% to class 1.
b) Do forward pass for output neurons. b) Experiments:Separate experiments are conducted for

2) BACKWARD PASS regression and classification tasks. For each task, four different
é—lrchitectures are tested (Table 1). Type “MERGE" refers to
the merged results of type RNN-FOR and RNN-BACK be-
cause they are regular unidirectional recurrent neural networks
trained in the forward and backward time directions, respec-
rﬂvely. The first three architecture types are also evaluated over
different shifts of the output data in the positive time direction,

Calculate the part of the objective function derivativ

for the time slicel < ¢t < T used in the forward pass.

a) Do backward pass for output neurons.

b) Do backward pass just for forward states (fro
t =T tot = 1) and backward states (from= 1

ot =T1). allowing the RNN to use future information, as discussed
3) UPDATE WEIGHTS above.
Every test (ANN training/evaluation) is run 100 times with
C. Experiments and Results different initializations of the ANN to get at least partially

In this section, we describe a number of experiments wifffl of random fluctuations of the results due to convergence
the goal of comparing the performance of the BRNN structuf@ local minima of the objective function. All networks are
with that of other structures. In order to provide a fair comif@ined with 200 cycles of a modified version of the re-
parison, we have used different structures with a comparaiient propagation (RPROP) technique [10] and extended to
number of parameters as a rough complexity measure. Th&PROP through a time variant. All weights in the structure
experiments are done for artificial data for both regressighe initialized in the range1,1) drawn from the uniform
and classification tasks with small networks to allow extensiyistribution, except the output biases, which are set so that

experiments and for real data for a phoneme classification t488 corresponding output gives the prior average of the output
with larger networks. data in case of zero input activation.

1) Experiments with Artificial Data: For the regression experiments, the networks usextiie ()
a) Description of Data: In these experiments, an artifi-2ctivation function and are trained to minimize the mean-

cial data set is used to conduct a set of regression affgHared-error objective function. For type "MERGE,” the
classification experiments. The artificial data is generated &ghmetic mean of the network outputs of “RNN-FOR” and
follows. First, a stream of 10000 random numbers betweedRNN-BACK” is taken, which assumes them to be indepen-
zero and one is created as the one-dimensional (1-D) ini@nt, as discussed above for fireear opinion pool

data to the ANN. The 1-D output data (the desired output) is FOT the cIaSS|f|cat|0n experiments, the output layer uses the
obtained as the weighted sum of the inputs within a window©ftmax” output function [4] so that outputs add up to one
of 10 frames to the left and 20 frames to the right with respe%f‘d can be interpreted as probabilities. As commonly used for
to the current frame. The weighting falls of linearly on bottNN'’s to be trained as classifiers, the cross-entropy objective

sides as function is used as the optimization criterion. Because the
outputs are probabilities assumed to be generated by inde-
— |At] pendent events, for type “MERGE,” the normalized geometric
y(t) = 10 Z a(t + At) - < - W) mean [ogarithmic opinion podl of the network outputs of

At=-10 “RNN-FOR” and “RNN-BACK” is taken.

n 1 i Wt + AF) < 3 M) c) Results: The results for the regression and the classifi-
20 ol 20 /° cation experiments averaged over 100 training/evaluation runs
can be seen in Figs. 4 and 5, respectively. For the regression
The weighting procedure introduces correlations betweé&ask, the mean squared error depending on the shift of the
neighboring input/output data pairs that become less foutput data in positive time direction seen from the time
data pairs further apart. Note that the correlations are rmtis of the network is shown. For the classification task, the
symmetrical, being on the right side of each frame, whiatecognition rate, instead of the mean value of the objective
is twice as “broad” as on the left side. For the classificatidunction (which would be the mean cross-entropy), is shown
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Fig. 4. Averaged results (100 runs) for the regression experiment on artificial data over different shifts of the output data with respect to #ta input d
in future direction (viewed from the time axis of the corresponding network) for several structures.

because it is a more familiar measure to characterize resuigssification task with the backward RNN, which converges
of classification experiments. to 59% (prior of class 0) for more than 15 frames delay.
Several interesting properties of RNN’s in general can be Another sign for the tradeoff between “remembering” and
directly seen from these figures. The minimum (maximuniknowledge combining” is the variation in the standard devia-
for the regression (classification) task should be at 20 framitien of the results, which is only shown for the backward RNN
delay for the forward RNN and at 10 frames delay for thim the classification task. In areas where both mechanisms
backward RNN because at those points, all information foepuld be useful (a 3 to 17 frame shift), different local minima
a perfect regression (classification) has been fed into tbk the objective function correspond to a certain amount
network. Neither is the case because the modeling powereither one of these mechanisms, which results in larger
of the networks given by the structure and the number @fictuations of the results than in areas where “remembering”
free parameters is not sufficient for the optimal solutionis not very useful £5 to 3 frame shift) or not possible (17
Instead, the single time direction networks try to make ta 20 frame shift).
tradeoff between “remembering” the past input information, If the outputs of forward and backward RNN’s are merged
which is useful for regression (classification), and “knowledgso that all available past and future information for regression
combining” of currently available input information. This(classification) is present, the results for the delays tested here
results in an optimal delay of one (two) frame for the forwar@-2 to 10) are, in almost all cases, better than with only one
RNN and five (six) frames for the backward RNN. Theetwork. This is no surprise because besides the use of more
optimum delay is larger for the backward RNN because thseful input information, the number of free parameters for
artificially created correlations in the training data are nahe model doubled.
symmetrical with the important information for regression For the BRNN, it does not make sense to delay the output
(classification) being twice as dense on the left side as on iti@a because the structure is already designed to cope with
right side of each frame. In the case of the backward RNHIl available input information on both sides of the currently
the time series is evaluated from right to left with the densewaluated time point. Therefore, the experiments for the BRNN
information coming up later. Because the denser informati@mne only run for SHIFT= 0. For the regression and classifica-
can be evaluated easier (fewer parameters are necessanytidortasks tested here, the BRNN clearly performs better than
a contribution to the objective function minimization), theéhe network “MERGE” built out of the single time-direction
optimal delay is larger for the backward RNN. If the delapetworks “RNN-FOR” and “RNN-BACK,” with a comparable
is so large that almost no important information can be savadmber of total free parameters.
over time, the network converges to the best possible solutior?) Experiments with Real DataThe goal of the experi-
based only on prior information. This can be seen for theents with real data is to compare different ANN structures
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Fig. 5. Averaged results for the classification experiment on artificial data.

for the classification of phonemes from the TIMIT speech
database. Several regular MLP’s and recurrent neural network
architectures, which make use of different amounts of acoustic
context, are tested here. 2)
a) Description of Data: The TIMIT phoneme database
is a well-established database consisting of 6300 sentences
spoken by 630 speakers (ten sentences per speaker). Following
official TIMIT recommendations, two of the sentences (which
are the same for every speaker) are not included in our
experiments, and the remaining data set is divided into two
sets: 1) the training data set consisting of 3696 sentences
from 462 speakers and 2) the test data set consisting of 1344
sentences from 168 speakers. The TIMIT database provide§)
hand segmentation of each sentence in terms of phonemes
and a phonemic label for every segment out of a pool of 61
phonemes. This gives 142910 phoneme segments for training
and 51681 for testing.

In our experiments, every sentence is transformed into
a vector sequence using three levels of feature extraction.
First, features are extracted every frame to represent the raw
waveform in a compressed form. Then, with the knowledge
of the boundary locations from the corresponding label files,
segment features are extracted to map the information from
an arbitrary length segment to a fixed-dimensional vector. A
third transformation is applied to the segment feature vectors
to make them suitable as inputs to a neural net. These three
steps are briefly described below.

1) Frame Feature Extraction: As frame features, 12 reg-
ular MFCC'’s (from 24 mel-space frequency bands) plys,

Hamming window and a preemphasis of 0.97. This is a
commonly used feature extraction procedure for speech
signals at the frame level [17].

Segment Feature Extraction: From the frame fea-
tures, the segment features are extracted by dividing
the segment in time into five equally spaced regions
and computing the area under the curve in each region,
with the function values between the data points linearly
interpolated. This is done separately for each of the
13 frame features. The duration of the segment is used
as an additional segment feature. This results in a 66-
dimensional segment feature vector.

Neural Network Preprocessing: Although ANN’s can
principally handle any form of input distributions, we
have found in our experiments that the best results
are achieved with Gaussian input distributions, which
matches the experiences from [12]. To generate an
“almost-Gaussian distribution,” the inputs are first nor-
malized to zero mean and unit variance on a sentence
basis, and then, every feature of a given chahigl
guantized using a scalar quantizer having 256 recon-
struction levels (1 byte). The scalar quantizer is designed
to maximize the entropy of the channel for the whole
training data. The maximum entropy scalar quantizer
can be easily designed for each channel by arranging
the channel points in ascending order according to their
feature values and putting (almost) an equal humber of

2Here, each vector has a dimensionality of 66. Temporal sequence of each
mponent (or feature) of this vector defines one channel. Thus, we have here

the log-energy are extracted every 10 ms with a 25.6-m6 channels.
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TABLE 1

TIMIT PHONEME CLASSIFICATION RESULTS FORFULL
TRAINING AND TEST DATA SETS WITH &~ 13000 RRRAMETERS

Structure

Rec-Rate %

TRAIN 61 (39)

Rec-Rate %
TEST 61 (39)

MLP-1 (1 segment)

MLP-3 (3 segments)

MLP-5 (5 segments)
FOR-RNN
BACK-RNN

FOR-RNN (1 delay)

FOR-RNN (2 delay)

MERGE (FOR+BACK)
BRNN

61.32 (70.20)
68.37 (75.74)
66.97 (74.60)
65.42 (74.27)
64.57 (72.83)
68.45 (75.37)
65.97 (73.03)
66.94 (75.01)
70.73 (77.33)

59.67 (68.95)
65.69 (73.48)
64.32 (72.35)
63.20 (72.51)
61.91 (70.94)
65.83 (73.00)
63.27 (70.77)
65.28 (73.73)
68.53 (75.48)

backward RNN’s (FOR-RNN, BACK-RNN), making use of
input information only on one side of the current segment, give
lower recognition rates (63.2 and 61.91%) than the forward
RNN with one segment delay (65.83%). With a two segment
delay, too much information has to be saved over time, and
the result drops to 63.27% (FOR-RNN, two delay), although
theoretically, more input information than for the previous
network is present. The merging of the outputs of two separate
networks (MERGE) trained in each time direction gives a
recognition rate of 65.28% and is worse than the forward
RNN structure using one segment delay. The bidirectional
recurrent neural network (BRNN) structure results in the best
performance (68.53%).

channel points in each quantization cell. For presentation lll. PREDICTION ASSUMING DEPENDENT QUTPUTS

to the network, the byte-coded value is remapped with In the preceding section, we have estimated the conditional

value= erf"![2. (byte+ 1/2)/256 — 1], where erf! is posterior probabilityPr (C; = k|x]) of a single classk at

the inverse error function [gff is part of math.h library a certain time point, given the sequence of input vectors

in C]. This mapping produces on average a distributiox! . For some applications, it is necessary to estimate the

that is similar to a Gaussian distribution. conditional posterior probabilitr (c1, ca, -+, crx}) of a

The feature extraction procedure described above transforpg§luenceof all classes from¢ = 1 to ¢ = T instead of

every sentence into a sequence of fixed dimensional vectbi&(Ct = k[x{), given the sequence of input vectors. This is a
representing acoustic phoneme segments. The sequencéliffeult problem, and no general practical solution is known,
these segment vectors (along with their phoneme class #though this type of estimation is essential for many pattern
bels) are used to train and test different ANN structures f§cognition applications where sequences are involved.
classification experiments, as described below.

b) Experiments:Experiments are performed here withA. Approach
different ANN structures (e.g., MLP, RNN, and BRNN), which  pijdirectional recurrent neural networks can provide an
allow the use of different amounts of acoustic context. Thgyproach to estimat®r (cy, ¢, - - -, er|x?). Using the rule
MLP structure is evaluated for three different amounts f;; ) = p(z|y)p(y), we decompose the sequence posterior
acoustic context as input. probability as

1) one segment;

T

2) three segments (middle, left, and right); Pr(cy, ¢z, -+, erlxy)
3) five segments (middle, two left, and two right). r T
The evaluated RNN structures are unidirectional forward and = H Pr(etleetss cepz, ooy er, x1)

t=1

backward RNN’s that use all acoustic context on one side,
two forward RNN’s with one and two segment delays to
incorporate right-hand information, the merged network built T
out of the unidirectional forward and backward RNN’s, and = H Pr(c|er, o, ooy com1, XT).
the BRNN. The structures of all networks are adjusted so that t=1

each of them has about the same number of free parameters

(approximately 13000 here).

c) Results: Table 1l shows the phoneme classification The probability term within the product is the conditional
results for the full training and test set. Although the databapeobability of an output class given all the input to the
is labeled to 61 symbols, a number of researchers have chosght- and left-hand side plus the class sequence on one side
to map them to a subset of 39 symbols. Here, results are giventhe currently evaluated input vector. The two ways of
for both versions, with the results for 39 symbols being simplyecomposingPr (ci, ¢z, - - -, cr|x{) (many more are possi-

a mapping from the results obtained for 61 symbols. Detallde) are here referred to as thierward and thebackward

of this standard mapping can be found in [11]. posterior probabilities. Note that these decompositions are only
The baseline performance assuming neighboring segmeatsimple application of probability rules, i.e., no assumptions

to be independent gives 59.67% recognition rate (MLP-1) @oncerning the shape of the distributions is made.

the test data. If three consecutive segments are taken as the the present approach, the goal is to train a net-

inputs (MLP-3), loosening the independence assumption wmrk to estimate conditional probabilities of the kind

three segments, the recognition rate goes up to 65.69%. Uskhg c:|c;, ¢z, -+, ci—1, X+ ) (Which are the probability terms

five segments (MLP-5), the structure is not flexible enough the products). The estimates for these probabilities can then

to make use of the additional input information, and as k@ combined by using the formulas above to estimate the full

result, the recognition rate drops to 64.32%. The forward awcdnditional probability of the sequence. It should be noted

backward pos?erior probability

forward postgrior probability
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Fig. 6. Modified bidirectional recurrent neural network structure shown here with extensions for the forward posterior probability estimation.

that the forward and the backward posterior probabilities are TABLE Il
exactly equal, provided the probability estimator is perfect. CLASSIFICATION RESULTS FORFULL TIMIT
. - . TRAINING AND TEST DATA WiTH 61 (39) SYmMBOLS
However, if neural networks are used as probability estimators,
this will rarely be the case because different architectures Structure Rec-Rate % | Rec-Rate %

or different local minima of the objective function to be TRAIN 61 (39) | TEST 61 (39)
forward. mod. BRNN 79.11 (84.42) | 72.70 (79.08)

m|n|m|zed correspond to estimators of_dlfferent perfor_mance. backward, mod. BRNN | 79.38 (83.27) | 72.74 (77.44)
It might therefore be useful to combine several estimators both merged, lin 83.57 (87.17) | 77.53 (82.11)
to get a better estimate of the quantity of interest using ., merged’log.. 83.89 (87:45) 7 75 (82:38)
the methods of the previous section. Two candidates that

. e T -
could be merged here a@r (ct|ess Coy 5 Coml, x3) and C. Experiments and Results
Pr(ct|ciy1, ctye, -+, cr, X1 ) at each time point.

1) Experiments:Experiments are performed using the full
TIMIT data set. To include the output (target) class in-
formation, the original 66-dimensional feature vectors are

A slightly modified BRNN structure can efficiently beextended to 72 dimensions. In the first six dimensions, the
used to estimate the conditional probabilities of the kindorresponding output class is coded in a binary format (binary
Pr(ccr, ¢, -+, ci—1, X1), which is conditioned on continu- [0, 1] — network input [-1,1]). Two different structures
ous(x}) and discrete inputécy, ca, -+, ¢;—1). Assume that of the modified BRNN (one for the forward and the other
the input for a specific time. is coded as one long vectorfor the backward posterior probability) are trained separately
containing the target output clags and the original input as classifiers using the cross-entropy objective function. The
vector x; with, for example, the discrete input coded in output neurons have the softmax activation function and the
the first L dimensions of the whole input vector. To make theemaining ones théanh () activation function. The forward
BRNN suitable to estimat®r (¢;|c1, c2, ++ -, ¢t—1, X1 ), two  (backward) modified BRNN has 64 (32) forward and 32
changes are necessary. First, instead of connecting the forw@4) backward states. Additionally, 64 hidden neurons are
and backward states to the current output states, they amplemented before the output layer. This results in a forward
connected to the next and previous output states, respectivébackward) modified BRNN structure with 26 333 weights.
and the inputs are directly connected to the outputs. Secomtiese two structures, as well as their combination—merged
if in the resulting structure the first. weight connections as a linear and a logarithmic opinion pool—are evaluated for
from the inputs to the backward states and the inputs phoneme classification on the test data.
the outputs are cut, then only discrete input information 2) Results: The results for the phoneme classification task
from ¢ < t. can be used to make predictions. This iare shown in Table Ill. It can be seen that the combination of
exactly what is required to estimate the forward posteritihhe forward and backward modified BRNN structures results
probability Pr (¢ ey, ¢, -+ -, ¢i—1, X} ). Fig. 6 illustrates this in much better performance than the individual structures. This
change of the original BRNN architecture. Cutting the inpugthows that the two structures, even though they are trained on
connections to the forward states instead of the backward states same training data set to compute the same probability
gives the architecture for estimating the backward posteriBe (c;, ¢, - -+, er|x} ), are providing different estimates of
probability. Theoretically, all discrete and continuous inputhis probability, and as a result, the combination of the two
c1, c2, -+, i1, X+ that are necessary to estimate the prometworks is giving better results. The slightly better results for
ability are still accessible for a contribution to the predictiorthe logarithmic opinion pool with respect to the linear opinion
During training, the bidirectional structure can adapt to the bgsbol suggest that it is reasonable to assume the two estimates
possible use of the input information, as opposed to structufes the probability Pr(cy, co, -+, cr|x¥) as independent,
that do not provide part of the input information because of tlethough the two structures are trained on the same data set.
limited size of the input windows (e.g., in MLP and TDNN) It should be noted that the modified BRNN structure is only
or one-sided windows (unidirectional RNN). a tool to estimate the conditional probability ofgven class

B. Modified Bidirectional Recurrent Neural Networks
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sequence and that it does not provide a class sequence with C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic recurrent neural

the highest probability. For this, all possible class sequences neworks: Theory and applicationdEEE Trans. Neural Networksol.

h b hed t t th t bable cl 5, pp. 153-156, Apr. 1994, _ N
ave tO_ € Ssearched 1o get the most probable class SequeiRgey Gish, “A probabilistic approach to the understanding and training

(which is a procedure that has to be followed if one is of neural network classifiers,” iRroc. IEEE Int. Conf. Acoust., Speech,

i i i i it Signal Process.1990, pp. 1361-1364.

interested m_ a prObIem like _Cont_muous_ SpeeCh reCOgnltlonri.i] R. A. Jacobs, “Methods for combining experts’ probability assessments,”

In the experiments reported in this section, we have used the Neural Comput.vol. 7, no. 5, pp. 867888, 1995.

class sequence provided by the TIMIT data base. Therefort] B. A. Pearimutter, “Learning state space trajectories in recurrent neural

- : : : networks,” Neural Comput.vol. 1, pp. 263-269, 1989.
the context on the (right or left) output side is known and IS[9] M. D. Richard and R. P. Lippman, “Neural network classifiers estimate

correct Bayesiana posterioriprobabilities,”Neural Comput.vol. 3, no. 4, pp.
461-483, 1991.
[10] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
IV. DIScUsSION AND CONCLUSION propagation learning: The RPROP algorithm,”Rroc. IEEE Int. Conf.

he fi f thi . | . Neural Networks 1993, pp. 586-591.
In the first part of this paper, a simple extension t0 @1 T. Robinson, “Several improvements to a recurrent error propagation

regular recurrent neural network structure has been presented, network phone recognition system,” Cambridge Univ. Eng. Dept. Tech.
which makes it possible to train the network in both time,  Rep. CUED/F-INFENG/TR82, Sept. 1991.

. . _ 12] A. J. Robinson, “An application of recurrent neural nets to phone
directions simultaneously. Because the network concentrates propability estimation,”|[EEE Trans. Neural Networksyol. 5, pp.
on minimizing the objective function for both time directions ] %98F;38_5, Apr. ’\%99:- b 4 S Renals. “Th .

H H . obinson, . ochoberg, an . enals, “The use of recurrent
simultaneously, there is no need to worry abo‘,‘t how to mer&g neural networks in continuous speech recognition Aiiomatic Speech
outputs from two separate networks. There is also no need Recognition: Advanced Topic§. H. Lee, F. K. Soong, and K. K.
to search for an “optimal delay” to minimize the objective14] Paliwal,ulEds. Bdostr?n, MA: (Ij(lllj_wer, _:h?%, pp. 2t33—255|5. works. i

. . . . . , Improved pnone modeling with recurrent neural networks, " In
function in a given data/ne_twork st_ructure combination bé? Proc. IEEE Int. Conf. Acoust., Speech, Signal Procasd. 1, 1994, pp.
cause all future and past information around the currently 37-40.
evaluated time point is theoretically available and does ngfl D- E. Rumelhart, G. E. Hinton, and R. J. Williams, *Leaming internal

. . representations by error backpropagation, Piarallel Distributed Pro-

depend 9” a pred_eflned C_jelay parameter. Through a series cessing, vol. 1D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,
of extensive experiments, it has been shown that the BRNN MA: MIT Press, 1986, pp. 318-362. _
structure leads to better results than the other ANN structur&§! A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,

. Phoneme recognition using time-delay neural networkEEE Trans.
In all these comparisons, the number of free pe}rgmet.ers has acoust., Speech, Signal Processingl. 37, pp. 328-339, Mar. 1989.
been kept to be approximately the same. The training time fid7] S. Young, “A review of large vocabulary speech recognitiolEEE
the BRNN is therefore about the same as for the other RNN's. Signal Processing Magvol. 15, pp. 45-57, May 1996.
Since the search for an optimal delay (an additional search
parameter during development) is not necessary, the BRNN'’s
can provide, in comparison to other RNN’s investigated in
this paper, faster development of real applications with bett
results.

In the second part of this paper, we have shown how to u
slightly modified bidirectional recurrent neural nets for th
estimation of the conditional probability of symbol sequence
without making any explicit assumption about the shape
the outp.u.t probability dIStrIbut.IOI’l. It should be npted the (ATR), Kyoto, Japan, to work on speech recognition.
the modified BRNN structure is only a tool to estimate th His research interests include neural networks and
conditional probability of agivenclass sequence; it does nostochastic modeling in general, Bayesian approaches, information theory, and
provide the class sequence with the highest probability. F&F"9:
this, all possible class sequences have to be searched to get
the most probable class sequence. We are currently working
on designing an efficient search engine, which will use only

ANN’s to find the most probable class sequence.
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