
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997 2673

Bidirectional Recurrent Neural Networks
Mike Schuster and Kuldip K. Paliwal,Member, IEEE

Abstract—In the first part of this paper, a regular recurrent
neural network (RNN) is extended to a bidirectional recurrent
neural network (BRNN). The BRNN can be trained without
the limitation of using input information just up to a preset
future frame. This is accomplished by training it simultaneously
in positive and negative time direction. Structure and training
procedure of the proposed network are explained. In regression
and classification experiments on artificial data, the proposed
structure gives better results than other approaches. For real
data, classification experiments for phonemes from the TIMIT
database show the same tendency.

In the second part of this paper, it is shown how the proposed
bidirectional structure can be easily modified to allow efficient
estimation of the conditional posterior probability of complete
symbol sequences without making any explicit assumption about
the shape of the distribution. For this part, experiments on real
data are reported.

Index Terms—Recurrent neural networks.

I. INTRODUCTION

A. General

M ANY classification and regression problems of engi-
neering interest are currently solved with statistical

approaches using the principle of “learning from examples.”
For a certainmodelwith a givenstructure inferred from the
prior knowledge about the problem and characterized by a
number ofparameters, the aim is to estimate these parameters
accurately and reliably using a finite amount of training data.
In general, the parameters of the model are determined by a
supervised training process, whereas the structure of the model
is defined in advance. Choosing a proper structure for the
model is often the only way for the designer of the system
to put in prior knowledge about the solution of the problem.

Artificial neural networks (ANN’s) (see [2] for an excellent
introduction) are one group of models that take the principle
“infer the knowledge from the data” to an extreme. In this
paper, we are interested in studying ANN structures for one
particular class of problems that are represented by temporal
sequences of input–output data pairs. For these types of
problems, which occur, for example, in speech recognition,
time series prediction, dynamic control systems, etc., one of
the challenges is to choose an appropriate network structure

Manuscript received June 5, 1997. The associate editor coordinating the
review of this paper and approving it for publication was Prof. Jenq-Neng
Hwang.

M. Schuster is with the ATR Interpreting Telecommunications Research
Laboratory, Kyoto, Japan.

K. K. Paliwal is with the ATR Interpreting Telecommunications Research
Laboratory, Kyoto, Japan, on leave from the School of Microelectronic
Engineering, Griffith University, Brisbane, Australia.

Publisher Item Identifier S 1053-587X(97)08055-0.

that, at least theoretically, is able to use all available input
information to predict a point in the output space.

Many ANN structures have been proposed in the literature
to deal with time varying patterns. Multilayer perceptrons
(MLP’s) have the limitation that they can only deal with
static data patterns (i.e., input patterns of a predefined dimen-
sionality), which requires definition of the size of the input
window in advance. Waibelet al. [16] have pursued time delay
neural networks (TDNN’s), which have proven to be a useful
improvement over regular MLP’s in many applications. The
basic idea of a TDNN is to tie certain parameters in a regular
MLP structure without restricting the learning capability of the
ANN too much. Recurrent neural networks (RNN’s) [5], [8],
[12], [13], [15] provide another alternative for incorporating
temporal dynamics and are discussed in more detail in a later
section.

In this paper, we investigate different ANN structures for
incorporating temporal dynamics. We conduct a number of
experiments using both artificial and real-world data. We show
the superiority of RNN’s over the other structures. We then
point out some of the limitations of RNN’s and propose a
modified version of an RNN called a bidirectional recurrent
neural network, which overcomes these limitations.

B. Technical

Consider a (time) sequence of input data vectors

and a sequence of corresponding output data vectors

with neighboring data-pairs (in time) being somehow statisti-
cally dependent. Given time sequencesand as training
data, the aim is to learn the rules to predict the output data
given the input data. Inputs and outputs can, in general, be
continuous and/or categorical variables. When outputs are
continuous, the problem is known as aregression problem,
and when they are categorical (class labels), the problem is
known as aclassification problem. In this paper, the term
prediction is used as a general term that includesregression
and classification.

1) Unimodal Regression:For unimodal regression orfunc-
tion approximation, the components of the output vectors are
continuous variables. The ANN parameters are estimated to
maximize some predefined objective criterion (e.g., maximize
the likelihood of the output data). When the distribution of the
errors between the desired and the estimated output vectors
is assumed to be Gaussian with zero mean and a fixed global
data-dependent variance, the likelihood criterion reduces to the

1053–587X/97$10.00 1997 IEEE

2674 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

(a) (b)

Fig. 1. General structure of a regular unidirectional RNN shown (a) with a delay line and (b) unfolded in time for two time steps.

convenient Euclidean distance measure between the desired
and the estimated output vectors or themean-squared-error
criterion, which has to be minimized during training [2]. It
has been shown by a number of researchers [2], [9] that
neural networks can estimate the conditional average of the
desired output (or target) vectors at their network outputs, i.e.,

, where is an expectation operator.
2) Classification: In the case of a classification problem,

one seeks the most probable class out of a given pool of
classes for every time frame, given an input vector

sequence . To make this kind of problem suitable to be
solved by an ANN, the categorical variables are usually coded
as vectors as follows. Consider thatis the desired class
label for the frame at time. Then, construct an output vector

such that its th component is one and other components
are zero. The output vector sequence constructed in this
manner along with the input vector sequence can be
used to train the network under some optimality criterion,
usually the cross-entropy criterion [2], [9], which results from
a maximum likelihood estimation assuming a multinomial
output distribution. It has been shown [3], [6], [9] that the
th network output at each time pointcan be interpreted as

an estimate of the conditional posterior probability of class
membership [] for class , with the
quality of the estimate depending on the size of the training
data and the complexity of the network.

For some applications, it is not necessary to estimate the
conditional posterior probability of a single
class given the sequence of input vectors but the conditional
posterior probability of a sequenceof
classes given the sequence of input vectors.1

C. Organization of the Paper

This paper is organized in two parts. Given a series of paired
input/output vectors , we want to
train bidirectional recurrent neural networks to perform the
following tasks.

• Unimodal regression (i.e., compute) or
classification [i.e., compute
for every output class and decide the class using the
maximum a posteriori decision rule]. In this case, the
outputs are treated statistically independent. Experiments

1Here, we want to make a distinction betweenCt andct. Ct is a categorical
random variable, andct is its value.

for this part are conducted for artificial toy data as well
as for real data.

• Estimation of the conditional probability of a complete
sequence of classes of lengthusing all available input
information [i.e., compute]. In
this case, the outputs are treated as being statistically
dependent, which makes the estimation more difficult and
requires a slightly different network structure than the one
used in the first part. For this part, results of experiments
for real data are reported.

II. PREDICTION ASSUMING INDEPENDENT OUTPUTS

A. Recurrent Neural Networks

RNN’s provide a very elegant way of dealing with (time)
sequential data that embodies correlations between data points
that are close in the sequence. Fig. 1 shows a basic RNN
architecture with a delay line and unfolded in time for two
time steps. In this structure, the input vectorsare fed one
at a time into the RNN. Instead of using a fixed number of
input vectors as done in the MLP and TDNN structures, this
architecture can make use of all the available input information
up to the current time frame (i.e.,)
to predict . How much of this information is captured by
a particular RNN depends on its structure and the training
algorithm. An illustration of the amount of input information
used for prediction with different kinds of NN’s is given in
Fig. 2.

Future input information coming up later thanis usually
also useful for prediction. With an RNN, this can be partially
achieved by delaying the output by a certain number oftime
frames to include future information up to to predict

(Fig. 2). Theoretically, could be made very large to
capture all the available future information, but in practice,
it is found that prediction results drop if is too large. A
possible explanation for this could be that with rising,
the modeling power of the RNN is increasingly concentrated
on remembering the input information up to for the
prediction of , leaving less modeling power for combining
the prediction knowledge from different input vectors.

While delaying the output by some frames has been used
successfully to improve results in a practical speech recogni-
tion system [12], which was also confirmed by the experiments
conducted here, the optimal delay is task dependent and has to

SCHUSTER AND PALIWAL: BIDIRECTIONAL RECURRENT NEURAL NETWORKS 2675

Fig. 2. Visualization of the amount of input information used for prediction by different network structures.

Fig. 3. General structure of the bidirectional recurrent neural network (BRNN) shown unfolded in time for three time steps.

be found by the “trial and error” error method on a validation
test set. Certainly, a more elegant approach would be desirable.

To use all available input information, it is possible to use
two separate networks (one for each time direction) and then
somehow merge the results. Both networks can then be called
experts for the specific problem on which the networks are
trained. One way ofmerging the opinions of different experts
is to assume the opinions to be independent, which leads to
arithmetic averaging for regression and to geometric averaging
(or, alternatively, to an arithmetic averaging in the log domain)
for classification. These merging procedures are referred to
as linear opinion poolingand logarithmic opinion pooling,
respectively [1], [7]. Although simple merging of network
outputs has been applied successfully in practice [14], it is
generally not clear how to merge network outputs in an optimal
way since different networks trained on the same data can no
longer be regarded as independent.

B. Bidirectional Recurrent Neural Networks

To overcome the limitations of a regular RNN outlined
in the previous section, we propose a bidirectional recurrent
neural network (BRNN) that can be trained using all available
input information in the past and future of a specific time
frame.

1) Structure: The idea is to split the state neurons of a
regular RNN in a part that is responsible for the positive
time direction (forward states) and a part for the negative time

direction (backward states). Outputs from forward states are
not connected to inputs of backward states, and vice versa.
This leads to the general structure that can be seen in Fig. 3,
where it is unfolded over three time steps. It is not possible to
display the BRNN structure in a figure similar to Fig. 1 with
the delay line since the delay would have to be positive and
negative in time. Note that without the backward states, this
structure simplifies to a regular unidirectional forward RNN,
as shown in Fig. 1. If the forward states are taken out, a
regular RNN with a reversed time axis results. With both time
directions taken care of in the same network, input information
in the past and the future of the currently evaluated time frame
can directly be used to minimize the objective function without
the need for delays to include future information, as for the
regular unidirectional RNN discussed above.

2) Training: The BRNN can principally be trained with
the same algorithms as a regular unidirectional RNN because
there are no interactions between the two types of state
neurons and, therefore, can be unfolded into a general feed-
forward network. However, if, for example, any form of
back-propagation through time (BPTT) is used, the forward
and backward pass procedure is slightly more complicated
because the update of state and output neurons can no longer
be done one at a time. If BPTT is used, the forward and
backward passes over the unfolded BRNN over time are done
almost in the same way as for a regular MLP. Some special
treatment is necessary only at the beginning and the end of
the training data. The forward state inputs at and the

2676 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

backward state inputs at are not known. Setting these
could be made part of the learning process, but here, they
are set arbitrarily to a fixed value (0.5). In addition, the local
state derivatives at for the forward states and at
for the backward states are not known and are set here to
zero, assuming that the information beyond that point is not
important for the current update, which is, for the boundaries,
certainly the case. The training procedure for the unfolded
bidirectional network over time can be summarized as follows.

1) FORWARD PASS
Run all input data for one time slice through
the BRNN and determine all predicted outputs.

a) Do forward pass just for forward states (from
to) and backward states (from to).

b) Do forward pass for output neurons.

2) BACKWARD PASS
Calculate the part of the objective function derivative
for the time slice used in the forward pass.

a) Do backward pass for output neurons.
b) Do backward pass just for forward states (from

to) and backward states (from
to).

3) UPDATE WEIGHTS

C. Experiments and Results

In this section, we describe a number of experiments with
the goal of comparing the performance of the BRNN structure
with that of other structures. In order to provide a fair com-
parison, we have used different structures with a comparable
number of parameters as a rough complexity measure. The
experiments are done for artificial data for both regression
and classification tasks with small networks to allow extensive
experiments and for real data for a phoneme classification task
with larger networks.

1) Experiments with Artificial Data:
a) Description of Data: In these experiments, an artifi-

cial data set is used to conduct a set of regression and
classification experiments. The artificial data is generated as
follows. First, a stream of 10 000 random numbers between
zero and one is created as the one-dimensional (1-D) input
data to the ANN. The 1-D output data (the desired output) is
obtained as the weighted sum of the inputs within a window
of 10 frames to the left and 20 frames to the right with respect
to the current frame. The weighting falls of linearly on both
sides as

The weighting procedure introduces correlations between
neighboring input/output data pairs that become less for
data pairs further apart. Note that the correlations are not
symmetrical, being on the right side of each frame, which
is twice as “broad” as on the left side. For the classification

TABLE I
DETAILS OF REGRESSION ANDCLASSIFICATION

ARCHITECTURESEVALUATED IN OUR EXPERIMENTS

experiments, the output data is mapped to two classes, with
class 0 for all output values below (or equal to) 0.5 and class
1 for all output values above 0.5, giving approximately 59%
of the data to class 0 and 41% to class 1.

b) Experiments:Separate experiments are conducted for
regression and classification tasks. For each task, four different
architectures are tested (Table I). Type “MERGE” refers to
the merged results of type RNN-FOR and RNN-BACK be-
cause they are regular unidirectional recurrent neural networks
trained in the forward and backward time directions, respec-
tively. The first three architecture types are also evaluated over
different shifts of the output data in the positive time direction,
allowing the RNN to use future information, as discussed
above.

Every test (ANN training/evaluation) is run 100 times with
different initializations of the ANN to get at least partially
rid of random fluctuations of the results due to convergence
to local minima of the objective function. All networks are
trained with 200 cycles of a modified version of the re-
silient propagation (RPROP) technique [10] and extended to
a RPROP through a time variant. All weights in the structure
are initialized in the range () drawn from the uniform
distribution, except the output biases, which are set so that
the corresponding output gives the prior average of the output
data in case of zero input activation.

For the regression experiments, the networks use the
activation function and are trained to minimize the mean-
squared-error objective function. For type “MERGE,” the
arithmetic mean of the network outputs of “RNN-FOR” and
“RNN-BACK” is taken, which assumes them to be indepen-
dent, as discussed above for thelinear opinion pool.

For the classification experiments, the output layer uses the
“softmax” output function [4] so that outputs add up to one
and can be interpreted as probabilities. As commonly used for
ANN’s to be trained as classifiers, the cross-entropy objective
function is used as the optimization criterion. Because the
outputs are probabilities assumed to be generated by inde-
pendent events, for type “MERGE,” the normalized geometric
mean (logarithmic opinion pool) of the network outputs of
“RNN-FOR” and “RNN-BACK” is taken.

c) Results: The results for the regression and the classifi-
cation experiments averaged over 100 training/evaluation runs
can be seen in Figs. 4 and 5, respectively. For the regression
task, the mean squared error depending on the shift of the
output data in positive time direction seen from the time
axis of the network is shown. For the classification task, the
recognition rate, instead of the mean value of the objective
function (which would be the mean cross-entropy), is shown

SCHUSTER AND PALIWAL: BIDIRECTIONAL RECURRENT NEURAL NETWORKS 2677

Fig. 4. Averaged results (100 runs) for the regression experiment on artificial data over different shifts of the output data with respect to the input data
in future direction (viewed from the time axis of the corresponding network) for several structures.

because it is a more familiar measure to characterize results
of classification experiments.

Several interesting properties of RNN’s in general can be
directly seen from these figures. The minimum (maximum)
for the regression (classification) task should be at 20 frames
delay for the forward RNN and at 10 frames delay for the
backward RNN because at those points, all information for
a perfect regression (classification) has been fed into the
network. Neither is the case because the modeling power
of the networks given by the structure and the number of
free parameters is not sufficient for the optimal solution.
Instead, the single time direction networks try to make a
tradeoff between “remembering” the past input information,
which is useful for regression (classification), and “knowledge
combining” of currently available input information. This
results in an optimal delay of one (two) frame for the forward
RNN and five (six) frames for the backward RNN. The
optimum delay is larger for the backward RNN because the
artificially created correlations in the training data are not
symmetrical with the important information for regression
(classification) being twice as dense on the left side as on the
right side of each frame. In the case of the backward RNN,
the time series is evaluated from right to left with the denser
information coming up later. Because the denser information
can be evaluated easier (fewer parameters are necessary for
a contribution to the objective function minimization), the
optimal delay is larger for the backward RNN. If the delay
is so large that almost no important information can be saved
over time, the network converges to the best possible solution
based only on prior information. This can be seen for the

classification task with the backward RNN, which converges
to 59% (prior of class 0) for more than 15 frames delay.

Another sign for the tradeoff between “remembering” and
“knowledge combining” is the variation in the standard devia-
tion of the results, which is only shown for the backward RNN
in the classification task. In areas where both mechanisms
could be useful (a 3 to 17 frame shift), different local minima
of the objective function correspond to a certain amount
to either one of these mechanisms, which results in larger
fluctuations of the results than in areas where “remembering”
is not very useful (5 to 3 frame shift) or not possible (17
to 20 frame shift).

If the outputs of forward and backward RNN’s are merged
so that all available past and future information for regression
(classification) is present, the results for the delays tested here
(2 to 10) are, in almost all cases, better than with only one
network. This is no surprise because besides the use of more
useful input information, the number of free parameters for
the model doubled.

For the BRNN, it does not make sense to delay the output
data because the structure is already designed to cope with
all available input information on both sides of the currently
evaluated time point. Therefore, the experiments for the BRNN
are only run for SHIFT . For the regression and classifica-
tion tasks tested here, the BRNN clearly performs better than
the network “MERGE” built out of the single time-direction
networks “RNN-FOR” and “RNN-BACK,” with a comparable
number of total free parameters.

2) Experiments with Real Data:The goal of the experi-
ments with real data is to compare different ANN structures

2678 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

Fig. 5. Averaged results for the classification experiment on artificial data.

for the classification of phonemes from the TIMIT speech
database. Several regular MLP’s and recurrent neural network
architectures, which make use of different amounts of acoustic
context, are tested here.

a) Description of Data: The TIMIT phoneme database
is a well-established database consisting of 6300 sentences
spoken by 630 speakers (ten sentences per speaker). Following
official TIMIT recommendations, two of the sentences (which
are the same for every speaker) are not included in our
experiments, and the remaining data set is divided into two
sets: 1) the training data set consisting of 3696 sentences
from 462 speakers and 2) the test data set consisting of 1344
sentences from 168 speakers. The TIMIT database provides
hand segmentation of each sentence in terms of phonemes
and a phonemic label for every segment out of a pool of 61
phonemes. This gives 142 910 phoneme segments for training
and 51 681 for testing.

In our experiments, every sentence is transformed into
a vector sequence using three levels of feature extraction.
First, features are extracted every frame to represent the raw
waveform in a compressed form. Then, with the knowledge
of the boundary locations from the corresponding label files,
segment features are extracted to map the information from
an arbitrary length segment to a fixed-dimensional vector. A
third transformation is applied to the segment feature vectors
to make them suitable as inputs to a neural net. These three
steps are briefly described below.

1) Frame Feature Extraction: As frame features, 12 reg-
ular MFCC’s (from 24 mel-space frequency bands) plus
the log-energy are extracted every 10 ms with a 25.6-ms

Hamming window and a preemphasis of 0.97. This is a
commonly used feature extraction procedure for speech
signals at the frame level [17].

2) Segment Feature Extraction: From the frame fea-
tures, the segment features are extracted by dividing
the segment in time into five equally spaced regions
and computing the area under the curve in each region,
with the function values between the data points linearly
interpolated. This is done separately for each of the
13 frame features. The duration of the segment is used
as an additional segment feature. This results in a 66-
dimensional segment feature vector.

3) Neural Network Preprocessing:Although ANN’s can
principally handle any form of input distributions, we
have found in our experiments that the best results
are achieved with Gaussian input distributions, which
matches the experiences from [12]. To generate an
“almost-Gaussian distribution,” the inputs are first nor-
malized to zero mean and unit variance on a sentence
basis, and then, every feature of a given channel2 is
quantized using a scalar quantizer having 256 recon-
struction levels (1 byte). The scalar quantizer is designed
to maximize the entropy of the channel for the whole
training data. The maximum entropy scalar quantizer
can be easily designed for each channel by arranging
the channel points in ascending order according to their
feature values and putting (almost) an equal number of

2Here, each vector has a dimensionality of 66. Temporal sequence of each
component (or feature) of this vector defines one channel. Thus, we have here
66 channels.

SCHUSTER AND PALIWAL: BIDIRECTIONAL RECURRENT NEURAL NETWORKS 2679

TABLE II
TIMIT PHONEME CLASSIFICATION RESULTS FORFULL

TRAINING AND TEST DATA SETS WITH � 13 000 PARAMETERS

channel points in each quantization cell. For presentation
to the network, the byte-coded value is remapped with
value erf byte , where erf is
the inverse error function [erf is part of math.h library
in C]. This mapping produces on average a distribution
that is similar to a Gaussian distribution.

The feature extraction procedure described above transforms
every sentence into a sequence of fixed dimensional vectors
representing acoustic phoneme segments. The sequence of
these segment vectors (along with their phoneme class la-
bels) are used to train and test different ANN structures for
classification experiments, as described below.

b) Experiments:Experiments are performed here with
different ANN structures (e.g., MLP, RNN, and BRNN), which
allow the use of different amounts of acoustic context. The
MLP structure is evaluated for three different amounts of
acoustic context as input.

1) one segment;
2) three segments (middle, left, and right);
3) five segments (middle, two left, and two right).

The evaluated RNN structures are unidirectional forward and
backward RNN’s that use all acoustic context on one side,
two forward RNN’s with one and two segment delays to
incorporate right-hand information, the merged network built
out of the unidirectional forward and backward RNN’s, and
the BRNN. The structures of all networks are adjusted so that
each of them has about the same number of free parameters
(approximately 13 000 here).

c) Results: Table II shows the phoneme classification
results for the full training and test set. Although the database
is labeled to 61 symbols, a number of researchers have chosen
to map them to a subset of 39 symbols. Here, results are given
for both versions, with the results for 39 symbols being simply
a mapping from the results obtained for 61 symbols. Details
of this standard mapping can be found in [11].

The baseline performance assuming neighboring segments
to be independent gives 59.67% recognition rate (MLP-1) on
the test data. If three consecutive segments are taken as the
inputs (MLP-3), loosening the independence assumption to
three segments, the recognition rate goes up to 65.69%. Using
five segments (MLP-5), the structure is not flexible enough
to make use of the additional input information, and as a
result, the recognition rate drops to 64.32%. The forward and

backward RNN’s (FOR-RNN, BACK-RNN), making use of
input information only on one side of the current segment, give
lower recognition rates (63.2 and 61.91%) than the forward
RNN with one segment delay (65.83%). With a two segment
delay, too much information has to be saved over time, and
the result drops to 63.27% (FOR-RNN, two delay), although
theoretically, more input information than for the previous
network is present. The merging of the outputs of two separate
networks (MERGE) trained in each time direction gives a
recognition rate of 65.28% and is worse than the forward
RNN structure using one segment delay. The bidirectional
recurrent neural network (BRNN) structure results in the best
performance (68.53%).

III. PREDICTION ASSUMING DEPENDENT OUTPUTS

In the preceding section, we have estimated the conditional
posterior probability of a single class at
a certain time point , given the sequence of input vectors

. For some applications, it is necessary to estimate the
conditional posterior probability of a
sequenceof all classes from to instead of

, given the sequence of input vectors. This is a
difficult problem, and no general practical solution is known,
although this type of estimation is essential for many pattern
recognition applications where sequences are involved.

A. Approach

Bidirectional recurrent neural networks can provide an
approach to estimate . Using the rule

, we decompose the sequence posterior
probability as

backward posterior probability

forward posterior probability

The probability term within the product is the conditional
probability of an output class given all the input to the
right- and left-hand side plus the class sequence on one side
of the currently evaluated input vector. The two ways of
decomposing (many more are possi-
ble) are here referred to as theforward and thebackward
posterior probabilities. Note that these decompositions are only
a simple application of probability rules, i.e., no assumptions
concerning the shape of the distributions is made.

In the present approach, the goal is to train a net-
work to estimate conditional probabilities of the kind

(which are the probability terms
in the products). The estimates for these probabilities can then
be combined by using the formulas above to estimate the full
conditional probability of the sequence. It should be noted

2680 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

Fig. 6. Modified bidirectional recurrent neural network structure shown here with extensions for the forward posterior probability estimation.

that the forward and the backward posterior probabilities are
exactly equal, provided the probability estimator is perfect.
However, if neural networks are used as probability estimators,
this will rarely be the case because different architectures
or different local minima of the objective function to be
minimized correspond to estimators of different performance.
It might therefore be useful to combine several estimators
to get a better estimate of the quantity of interest using
the methods of the previous section. Two candidates that
could be merged here are and

at each time point.

B. Modified Bidirectional Recurrent Neural Networks

A slightly modified BRNN structure can efficiently be
used to estimate the conditional probabilities of the kind

, which is conditioned on continu-
ous and discrete inputs . Assume that
the input for a specific time is coded as one long vector
containing the target output class and the original input
vector with, for example, the discrete input coded in
the first dimensions of the whole input vector. To make the
BRNN suitable to estimate , two
changes are necessary. First, instead of connecting the forward
and backward states to the current output states, they are
connected to the next and previous output states, respectively,
and the inputs are directly connected to the outputs. Second,
if in the resulting structure the first weight connections
from the inputs to the backward states and the inputs to
the outputs are cut, then only discrete input information
from can be used to make predictions. This is
exactly what is required to estimate the forward posterior
probability . Fig. 6 illustrates this
change of the original BRNN architecture. Cutting the input
connections to the forward states instead of the backward states
gives the architecture for estimating the backward posterior
probability. Theoretically, all discrete and continuous inputs

that are necessary to estimate the prob-
ability are still accessible for a contribution to the prediction.
During training, the bidirectional structure can adapt to the best
possible use of the input information, as opposed to structures
that do not provide part of the input information because of the
limited size of the input windows (e.g., in MLP and TDNN)
or one-sided windows (unidirectional RNN).

TABLE III
CLASSIFICATION RESULTS FORFULL TIMIT

TRAINING AND TEST DATA WITH 61 (39) SYMBOLS

C. Experiments and Results

1) Experiments:Experiments are performed using the full
TIMIT data set. To include the output (target) class in-
formation, the original 66-dimensional feature vectors are
extended to 72 dimensions. In the first six dimensions, the
corresponding output class is coded in a binary format (binary
[0, 1] network input [). Two different structures
of the modified BRNN (one for the forward and the other
for the backward posterior probability) are trained separately
as classifiers using the cross-entropy objective function. The
output neurons have the softmax activation function and the
remaining ones the activation function. The forward
(backward) modified BRNN has 64 (32) forward and 32
(64) backward states. Additionally, 64 hidden neurons are
implemented before the output layer. This results in a forward
(backward) modified BRNN structure with 26 333 weights.
These two structures, as well as their combination—merged
as a linear and a logarithmic opinion pool—are evaluated for
phoneme classification on the test data.

2) Results: The results for the phoneme classification task
are shown in Table III. It can be seen that the combination of
the forward and backward modified BRNN structures results
in much better performance than the individual structures. This
shows that the two structures, even though they are trained on
the same training data set to compute the same probability

, are providing different estimates of
this probability, and as a result, the combination of the two
networks is giving better results. The slightly better results for
the logarithmic opinion pool with respect to the linear opinion
pool suggest that it is reasonable to assume the two estimates
for the probability as independent,
although the two structures are trained on the same data set.

It should be noted that the modified BRNN structure is only
a tool to estimate the conditional probability of agivenclass

SCHUSTER AND PALIWAL: BIDIRECTIONAL RECURRENT NEURAL NETWORKS 2681

sequence and that it does not provide a class sequence with
the highest probability. For this, all possible class sequences
have to be searched to get the most probable class sequence
(which is a procedure that has to be followed if one is
interested in a problem like continuous speech recognition).
In the experiments reported in this section, we have used the
class sequence provided by the TIMIT data base. Therefore,
the context on the (right or left) output side is known and is
correct.

IV. DISCUSSION AND CONCLUSION

In the first part of this paper, a simple extension to a
regular recurrent neural network structure has been presented,
which makes it possible to train the network in both time
directions simultaneously. Because the network concentrates
on minimizing the objective function for both time directions
simultaneously, there is no need to worry about how to merge
outputs from two separate networks. There is also no need
to search for an “optimal delay” to minimize the objective
function in a given data/network structure combination be-
cause all future and past information around the currently
evaluated time point is theoretically available and does not
depend on a predefined delay parameter. Through a series
of extensive experiments, it has been shown that the BRNN
structure leads to better results than the other ANN structures.
In all these comparisons, the number of free parameters has
been kept to be approximately the same. The training time for
the BRNN is therefore about the same as for the other RNN’s.
Since the search for an optimal delay (an additional search
parameter during development) is not necessary, the BRNN’s
can provide, in comparison to other RNN’s investigated in
this paper, faster development of real applications with better
results.

In the second part of this paper, we have shown how to use
slightly modified bidirectional recurrent neural nets for the
estimation of the conditional probability of symbol sequences
without making any explicit assumption about the shape of
the output probability distribution. It should be noted that
the modified BRNN structure is only a tool to estimate the
conditional probability of agiven class sequence; it does not
provide the class sequence with the highest probability. For
this, all possible class sequences have to be searched to get
the most probable class sequence. We are currently working
on designing an efficient search engine, which will use only
ANN’s to find the most probable class sequence.

REFERENCES

[1] J. O. Berger, Statistical Decision Theory and Bayesian Analysis.
Berlin, Germany: Springer-Verlag, 1985.

[2] C. M. Bishop,Neural Networks for Pattern Recognition.Oxford, U.K.:
Clarendon, 1995.

[3] H. Bourlard and C. Wellekens, “Links between Markov models and
multilayer perceptrons,”IEEE Trans. Pattern Anal. Machine Intell., vol.
12, pp. 1167–1178, Dec. 1990.

[4] J. S. Bridle, “Probabilistic interpretation of feed-forward classifica-
tion network outputs, with relationships to statistical pattern recogni-
tion,” in Neurocomputing: Algorithms, Architectures and Applications,
F. Fougelman-Soulie and J. Herault, Eds. Berlin, Germany: Springer-
Verlag, 1989, NATO ASI Series, vol. F68, pp. 227–236.

[5] C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic recurrent neural
networks: Theory and applications,”IEEE Trans. Neural Networks,vol.
5, pp. 153–156, Apr. 1994.

[6] H. Gish, “A probabilistic approach to the understanding and training
of neural network classifiers,” inProc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 1990, pp. 1361–1364.

[7] R. A. Jacobs, “Methods for combining experts’ probability assessments,”
Neural Comput., vol. 7, no. 5, pp. 867–888, 1995.

[8] B. A. Pearlmutter, “Learning state space trajectories in recurrent neural
networks,”Neural Comput., vol. 1, pp. 263–269, 1989.

[9] M. D. Richard and R. P. Lippman, “Neural network classifiers estimate
Bayesiana posterioriprobabilities,”Neural Comput., vol. 3, no. 4, pp.
461–483, 1991.

[10] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” inProc. IEEE Int. Conf.
Neural Networks,1993, pp. 586–591.

[11] T. Robinson, “Several improvements to a recurrent error propagation
network phone recognition system,” Cambridge Univ. Eng. Dept. Tech.
Rep. CUED/F-INFENG/TR82, Sept. 1991.

[12] A. J. Robinson, “An application of recurrent neural nets to phone
probability estimation,” IEEE Trans. Neural Networks,vol. 5, pp.
298–305, Apr. 1994.

[13] T. Robinson, M. Hochberg, and S. Renals, “The use of recurrent
neural networks in continuous speech recognition,” inAutomatic Speech
Recognition: Advanced Topics,C. H. Lee, F. K. Soong, and K. K.
Paliwal, Eds. Boston, MA: Kluwer, 1996, pp. 233–258.

[14] , “Improved phone modeling with recurrent neural networks,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 1, 1994, pp.
37–40.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error backpropagation,” inParallel Distributed Pro-
cessing, vol. 1, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,
MA: MIT Press, 1986, pp. 318–362.

[16] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. 37, pp. 328–339, Mar. 1989.

[17] S. Young, “A review of large vocabulary speech recognition,”IEEE
Signal Processing Mag., vol. 15, pp. 45–57, May 1996.

Mike Schuster received the M.Sc. degree in elec-
tronic engineering in 1993 from the Gerhard Mer-
cator University, Duisburg, Germany. Currently, he
is also working toward the Ph.D. degree at the Nara
Institute of Technology, Nara, Japan.

After doing some research in fiber optics at
the University of Tokyo, Tokyo, Japan, and some
research in gesture recognition in Duisburg, he
started at Advanced Telecommunication Research
(ATR), Kyoto, Japan, to work on speech recognition.
His research interests include neural networks and

stochastic modeling in general, Bayesian approaches, information theory, and
coding.

Kuldip K. Paliwal (M’89) is a Professor and
Chair of Communication/Information Engineering
at Griffith University, Brisbane, Australia. He has
worked at a number organizations, including the
Tata Institute of Fundamental Research, Bombay,
India, the Norwegian Institute of Technology,
Trondheim, Norway, the University of Keele,
U.K., AT&T Bell Laboratories, Murray Hill, NJ,
and Advanced Telecommunication Research (ATR)
Laboratories, Kyoto, Japan. He has co-edited two
books: Speech Coding and Synthesis(New York:

Elsevier, 1995) andSpeech and Speaker Recognition: Advanced Topics
(Boston, MA: Kluwer, 1996). His current research interests include speech
processing, image coding, and neural networks.

Dr. Paliwal received the 1995 IEEE Signal Processing Society Senior
Award. He is an Associate Editor of the IEEE TRANSACTIONS ON SPEECH

AND AUDIO PROCESSING.

