A Weak Supervision Approach to Detecting Visual
Anomalies for Automated Testing of Graphics Units

1 Tom Hope!

Adi Szeskin' Lev Faivishevsky! Ashwin K Muppalla? Amitai Armon
'Intel, IT Advanced Analytics 2 Intel, Visual Processing Group

{adi.szeskin, tom.hope } @intel.com

Abstract

We present a deep learning system for testing graphics units by detecting novel
visual corruptions in videos. Unlike previous work in which manual tagging
was required to collect labeled training data, our weak supervision method is
fully automatic and needs no human labelling. This is achieved by reproducing
driver bugs that increase the probability of generating corruptions, and by making
use of ideas and methods from the Multiple Instance Learning (MIL) setting.
In our experiments, we significantly outperform unsupervised methods such as
GAN-based models and discover novel corruptions undetected by baselines, while
adhering to strict requirements on accuracy and efficiency of our real-time system.

1 Introduction

Graphics processing units (GPU), complex pieces of hardware responsible for rendering images for
display, are essential components in personal computers, mobile phones, embedded systems and
gaming consoles. The complexity of modern GPUs mandates validation and testing for defects,
checking both hardware and software (e.g., drivers) with diverse systems (e.g., screens) and content.

Visual corruptions are a key symptom of missed GPU defects. Conventional techniques for capturing
them rely on humans observing a display and identifying anomalies. This manual process is error-
prone, and potentially costly and unscalable. In our previous work [[1], we described a deep learning
system that analyzes visual content displayed by the tested GPU and detects anomalies using both
supervised and unsupervised learning. Our visual corruption detection system captures the display
using a camera (screen grabbing does not enable testing the actual displays used). To control the
generation of corruptions (typically quite rare, see Figures[I[4), we reproduced driver bugs that were
observed in the past and trained our models on known corruptions.

While our supervised approach with deep CNN [2] and LSTM [3] topologies obtained high accuracy
for known corruptions, model training involved costly manual tagging. Even when reproducing
driver bugs, a large portion of video segments may still remain uncorrupted, and manual search for
anomalous frames was required. This process led to limited amounts of collected training data, and
thus potentially limited exposure and generalization to novel corruptions. Therefore, in addition to
our high-accuracy supervised algorithms, our system also included unsupervised algorithms to detect
anomalies. These algorithms required no manual effort, but suffered from lower accuracy due to lack
of supervision signal.

In this work, we strike a balance between the supervised and unsupervised approaches, using weak
supervision models. We make use of the fact that reproducing driver bugs yields visual corruptions
with higher probability than with running without those malfunctioning drivers. We thus obtain weak
labels, indicating higher propensity for corruption for videos generated with faulty drivers. Since
the process of generating corruptions can be automated, we can remove human involvement and
potentially obtain unlimited amounts of weakly supervised data.

Preprint. Under review.

Figure 1: Examples of visual corruptions.

We exploit this weak signal with Multiple Instance Learning [4} 5] models we adapt to our case. We
substantially outperform unsupervised models such as Generalized Adversarial Networks [6], while
meeting strict requirements to enable both accurate detection and real-time computational efficiency
(each one of our deployed systems processes 2M frames per day). Finally, in addition to surpassing
unsupervised models, we are also able to discover novel visual corruptions that supervised models
were unable to detect, due to our ability to scale and generalize.

2 Weak Supervision Approach

In this section we describe in detail our weak supervision modeling approach, designed to enable
both accurate detection and real-time computational efficiency, while removing the need for manual
tagging and boosting generalization to novel corruption types.

Problem formulation and overview. Let X be a set of IV training videos x1, x3...x N, and let)
be a set of corresponding weak labels y1, x2...yn, with each y; € {1,0} corresponding to whether
video z; contains a visual corruption or not.) are generated automatically by reproducing known
bugs as described above, and are dubbed weak labels for two main reasons. First, the labels are noisy
— reproducing known bugs does not guarantee visual anomalies, but merely increases the probability
of observing them. Second, the labels are aggregate — a video x; with y; = 1 may potentially be long
and nearly devoid of visual corruptions, with only a small segment containing an anomaly.

Importantly, during test-time our real-time system receives short segments of videos (consisting, for
example, of 32 frames). Our goal, based on the above training data with weak labels given for entire
videos, is to learn to detect visual corruptions in new incoming segments at test time.

Our approach is based on the Multiple Instance Learning (MIL) setting [3} 4] [7]], where aggregate
labels are given for bags of instances. A common goal in MIL is to transfer information from labels
at the bag level to train an individual-level model [7]. We are interested in going from aggregate
video-level labels, to a segment-level model. We model videos as bags of segments, similarly to [4].

Our method consists of bag creation, feature extraction, and a weak supervision component.

Bag Creation. Let B, be a corrupted bag (video), where different continuous segments represent
individual instances in the bag, (p1, p2, ..., Pm), Where m is the number of segments in the bag. We
assume that at least one of these segments contains a corruption. Similarly, uncorrupted videos are
represented as normal bags B,,, with continuous segments (n1, na, ..., Ny,). In the normal bag, none
of the instances contain corruptions.

Feature extraction. We denote by f a pre-trained C3D [8] trained on the Sports-1M dataset [9]]
followed by a 3-layer fully-connected (FC) neural network. During training we freeze the original
C3D weights, and update only the FC.

Weak supervision. We apply a Deep Multiple Instance Learning (MIL) approach as proposed in [4],
as well as an MIL Attention method as in [5]]. We next elaborate on these two approaches.

2.1 Deep Multiple Instance Learning
For the loss function we use the following hinge loss H_L = max(0,1 — max FViH) + max J{Z3)!
1€EB, 1€B8n

where V! is a segment in a corrupted bag ,V? is a segment in a normal bag, B, is a corrupted bag and

B,, is anormal bag. As illustrated in Figurem for each of B, and B,,, we take instances with maximum

predicted score under f and penalize pairs of bags where the difference 1 — max fov)+ max f)
1€B, 1€Ln

is greater than zero in order to push positive and negative segments apart. We update model weights
with mini-batch gradient descent on the objective min(% 2]2.21 H_L) + ||w||?, where z is the batch
w

size and w are classifier weights.

Instance scores in

Corrupted video Corrupted bag X ,«
512 frames AN\ Ba Corruu bag
= k | 06 O 05
SE S @ . ® §°8
16 frames S ~ =
e e & Pre- © g @® s MIL
32 temporal segments A~ trained @ . . © Ranking
=) C3D . e ° ‘8 05 Loss
€ M 02 &
[) 16 frames o;..;o . @ @ 00.1 002
&S e'e ® e
Instance scores in
Normal video Normal bag

normal bag

Figure 2: Our Multiple Instance Learning (MIL) model flow requires no manual tagging, using weak
labels generated by reproducing known bugs and feeding them into weak supervision models.

2.2 Attention-based Model

We use a weighted average of instances (low-dimensional embedding) where weights are determined
by a neural network as described in [5]. Let H = {p1...pm,n1.-.m } := {h1...h;}. Then we use

exp{w " tanh(Vh})} Lx1
S exp{wT tanh(l\e/th)} ,WER and
V € REXM Rather than using maximally-scored segments, here we learn a weighted combination
of bag segments, with attention weight for segment & given by ay.

the following MIL pooling z = Zszl arphy, where ay, =

3 Experiments and Results

Implementation details. We use contiguous sequences of 512 frames as bags, and split them into 32
contiguous sequences of 16 frames (segments). We resize each frame to 112 x 112 x 3 and finally
obtain bags of 32 segments, each of size 16 x 112 x 112 x 3. As in [4], each training batch contains
60 bags of 30 corrupted bags and 30 normal bags. Our training data consists of 532 videos and 216
for validation. For our test set we have 2573 uncorrupted videos and 213 corrupted videos.

After passing our segments through the pre-trained C3D [[8] feature extractor, we obtain a 32 x 4096
output that is passed through a 3-layer fully-connected neural network.

Unlike [1}14]], we do not assume to be given frame-level labels during validation, hence we make use
of a custom accuracy metric on the bag level in which a bag is labeled as positive if at least one of its
segments contains a corruption. In addition, we use a tuned threshold to ensure a False Positive Rate
(FPR) of = 0.1%, a criterion chosen to reflect strict false alert requirements imposed on our system.

More formally, let B be a bag, let f be our trained classifier, let ¢ be a segment and let ¢ be a
threshold so that the FPR is at most 0.1%, i.e. mfux{t >0: %(t) < 0.001} (we tune ¢ on 1M

frames of uncorrupted data). Let A = {B : B is a bag which has a corruption in it} be the set of

bags with at least one corrupted segment, and define a bag aggregation function h;(5) such that

hi(B) = 1if max f(@) > t and h(B) = 0 otherwise. We then use true positive and true negative
1€

sets {B: Be AAh(B) =1} and {B: B ¢ AA h(B) = 0}, respectively, to measure accuracy.

For the Deep Multiple Instance model, we trained with dropout of 60%, using Adagrad [10] with a
learning rate of 0.1 and epsilon 1le — 08. For the MIL Attention model we trained with 60% dropout
using Adam [11]]. We pick the best models with a validation set.

3.1 Comparison to Unsupervised Methods

Our approach is most comparable to the unsupervised methods reported in [1]] that also do not involve
any manual tagging: Variational Auto-Encoder (VAE), Generative Adversarial Network (GAN),
(un-)normalized energy-based model, and an anomaly detection method on top of C3D features.

ROC curve

Figure 3: ROC curves for our weak su-
pervision models. The attention-based
model is better in terms of overall AUC,
but the Deep MIL outperforms it in
terms of our Recall @FPR= 0.1 metric,
aimed to reflect our strict False Positive
Rate requirements.

True positive rate

—— Without Attention (area = 0.842)
.—— With Attention (area = 0.917)

0.0 02 08 10

04 06
False positive rate

In Table[I] we compare our approach to the unsupervised results of []] with respect to Recall@False
Positive Rate= 0.1%. We use the Deep MIL approach rather than the attention method as it performed
better in terms of this metric. As seen in Figure 3] while the attention-based method does better in
overall Area Under the Curve (AUC), the Deep MIL method outperforms it in terms of Recall @FPR.

We significantly surpass the unsupervised approaches by utilizing weak supervision signal, increasing
accuracy about 3-fold from the best baseline (GAN-based). In Table[T] we compare against the GAN
model across a range of corruptions and outperform it across 4 corruption types by a large margin.

Average recall (%) Corruption Unsupervised Deep MIL

Energy w/o norm 2.8 Flicker 4.0 13.7
Energy w norm . 33 Display stride 1.2 114
VAE ' 29 Vertical, Horizontal lines 4.39 273
BEGAN 4'7 Green flash 1.5 13.1
C3D-Anomaly 0'7 Color space change 14.1 11.0
Deep MIL 13.0 Message Popup 11.0 5.4

. Macro block 6.3 2.7

Table 1: Comparing [1]] and our approach. Left: Recall@FPR= 0.1%. Right: Results per corruption
type.

3.2 Discovery of New Corruptions

We are able to discover new corruptions undetected by both the supervised methods described in
as well as the unsupervised baselines. Two of them feature anomalies manifested in a single frame
(Figure[a). We detected 38 videos with the Half Screen corruption and 6 with Bottom split. For both
corruptions we achieve a perfect false positive rate. Another type of corruption we discover features
a sudden blackout, which is of a more sequential nature (Figure 4b)).

(b) Sequence of sudden blackout corruption.

(a) Bottom Split, and Half Screen Corrup-
tions.

Figure 4: Illustrations of unknown corruptions our method is able to discover. Original uncorrupted
images are from [13]).

4 Discussion and Future Work

We described a weak supervision approach for detecting visual corruptions in videos and testing
GPUs. Our methods involve no human tagging, outperforms unsupervised approaches and discovers
novel corruptions. In the future, we would like to extend our approach to incorporate frame labels
when they are given, and also explore the multiclass setting.

References

[1] Lev Faivishevsky, Ashwin K. Muppalla, Ravid Shwartz-Ziv, Ronen Laperdon, Benjamin
Melloul, Tahi Hollander, and Amitai Armon. Automated testing of graphics units by deep-
learning detection of visual anomalies. 2018.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097-1105, 2012.

[3] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[4] Wagas Sultani, Chen Chen, and Mubarak Shah. Real-world anomaly detection in surveillance
videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6479-6488, 2018.

[5] Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance
learning. In International Conference on Machine Learning, pages 2132-2141, 2018.

[6] David Berthelot, Thomas Schumm, and Luke Metz. Began: boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

[7] Dimitrios Kotzias, Misha Denil, Nando De Freitas, and Padhraic Smyth. From group to
individual labels using deep features. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 597-606. ACM, 2015.

[8] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pages 4489-4497, 2015.

[9] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, pages 1725-1732, 2014.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), 6(1):3, 2012.

[13] Max Pixel. Sweet Waffle Delicious Food Enjoy Dessert Eat. https://www.maxpixel.net/
Sweet-Waffle-Delicious-Food-Enjoy-Dessert-Eat-4477521.

[14] Max Pixel. Donut Frosting Food Sugar Bakery Eat Bake. https://www.maxpixel.net/
Donut-Frosting-Food-Sugar-Bakery-Eat-Bake-4475458.

[15] Wikimedia Commons. A basic desktop environment of BOSS Linux 6.1 on a personal computer
with menus above and a taskbar below. https://commons.wikimedia.org/wiki/File:
Screenshot_of_B0SS_Linux_v6.1_Desktop_Environment.png, 2017.

https://www.maxpixel.net/Sweet-Waffle-Delicious-Food-Enjoy-Dessert-Eat-4477521
https://www.maxpixel.net/Sweet-Waffle-Delicious-Food-Enjoy-Dessert-Eat-4477521
https://www.maxpixel.net/Donut-Frosting-Food-Sugar-Bakery-Eat-Bake-4475458
https://www.maxpixel.net/Donut-Frosting-Food-Sugar-Bakery-Eat-Bake-4475458
https://commons.wikimedia.org/wiki/File:Screenshot_of_BOSS_Linux_v6.1_Desktop_Environment.png
https://commons.wikimedia.org/wiki/File:Screenshot_of_BOSS_Linux_v6.1_Desktop_Environment.png

	Introduction
	Weak Supervision Approach
	Deep Multiple Instance Learning
	Attention-based Model

	Experiments and Results
	Comparison to Unsupervised Methods
	Discovery of New Corruptions

	Discussion and Future Work

