
Lung cancer, with an annual incidence of 3.34 million cases, is the deadliest 
form of cancer, with an estimated 1.88 million deaths per year worldwide1. 
Early detection is critical to long-term survival: stage 4 lung cancer has a 5-year 
survival rate of only 5%. But if caught at stage 1, patients experience a 5-year 
survival rate of 56%.

That’s where technology comes in. The National Lung Screening Trial (NLST) 
revealed that participants who received low-dose helical CT (computed 
tomography) scans had a 20 percent lower risk of dying from lung cancer than 
participants who received standard chest X-rays.

Technology That Improves Patient Outcomes 
Advances in multi-detector CT scanning have made high-resolution volumetric 
imaging possible in a single breath hold, at acceptable levels of radiation 
exposure. Several observational studies have shown that a low-dose helical CT 
scan of the lung detects more nodules and lung cancers, including early-stage 
cancers. Potentially malignant lung nodules can be identified from chest CT 
scans, and early intervention can result in a higher chance of long-term survival.

Solving the Detection Challenge 
A typical chest CT scan contains between 300-500 slices, and a radiologist 
must examine each slice to detect lung nodules. Lung nodules are small masses 
of tissue in the lung that appear as round, white shadows on a CT scan; most 
are benign. They are often difficult to detect and document. Their detection 
requires specialized expertise, and, with widespread implementation of lung 
cancer screening programs, the burden on radiologists is rapidly increasing. 
Computer-aided-detection (CAD) is becoming increasingly useful in helping 
radiologists interpret high-dimensional imaging data like CT and MRI scans. 
CAD algorithms have also been successful in increasing radiologists’ ability to 
detect lung nodules. With the advent of deep learning and convolutional neural 
networks (CNNs), CAD algorithms have started moving away from a reliance on 
hand-crafted features requiring custom engineering, to learning features from 
data through CNNs.

Predible and Intel Help Meet the Challenge
Predible Health and Intel Corporation have joined forces in the fight against lung 
cancer. Predible Health’s deep learning algorithm for detecting lung nodules 
on CT scans has been optimized on powerful Intel® Xeon® Scalable processors 
using the Intel® Distribution of OpenVINO™ Toolkit.
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“Predible Health’s deep learning solutions 
have consistently demonstrated improved 
precision and efficiency for Radiologists, 
especially in cancer screening settings. 
Our collaboration with Intel enables us 
to deploy within the hospital premises, 
ensuring seamless workflow integration 
and real-time inference of the studies.” 

– Suthirth Vaidya, CEO, Predible Health
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Algorithm, Workflow, Requirements
Predible has built a software tool that automatically 
queries chest CT DICOM images from a Picture Archiving 
and Communication System (PACS), processes them, 
and uses neural networks to detect lung nodules. DICOM 
(Digital Imaging and Communications in Medicine) is an 
industry-standard method for handling, storing, printing, 
and transmitting medical imaging information. Once the 
DICOM series has been processed by the neural networks, 
the results are sent back to the PACS and are available to be 
viewed by the radiologist.

The deep learning system was trained to detect and segment 
lung nodules from chest CT scans. The system contains 
three stages, and each stage uses a combination of neural 
networks to solve a specific subtask.

Computational Requirements
For estimating computational requirements, Intel and 
Predible Health researchers assumed an operating window 
of one hour between start of image acquisition and start of 
interpretation by the radiologist. This means that the deep 
learning algorithms have about 30 minutes to process a 
chest CT scan and push the resulting secondary capture onto 
the PACS—which leaves 30 minutes for image acquisition. 
Hospitals may use either dedicated or shared compute assets 
for deep learning-based inferencing. In the former case, the 
expense of a dedicated compute asset could limit options for 
performance, resulting in a longer time to infer, while in the 
latter case, compute resource sharing could result in longer 
or shorter inference times, based on the clinical workflow.

For this study, the patches optimized by the Intel Distribution 
of OpenVINO toolkit for image recognition in workflow stages 
1-3 are executed on Intel Xeon Scalable processors, and the 
performance is compared with a non-optimized PyTorch* 
software baseline on the same compute platform.
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Follows DICOM Standards

PACS Viewer

Figure 1. Automatic Query & Retrieval (AutoQR) pipeline 
integrates with PACS for processing Chest CT. Images used 
with permission by Predible Health.
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Figure 2. Sub-socket partitioning across dual-socket Intel® Xeon® processor-based platforms for multiple inference streams.

Other pre-processing and post-processing stages are 
not compared since they are typically executed on Intel® 
processor-based systems that already deploy optimized 
libraries. Depending on the compute asset choice (dedicated 
versus shared), the pre- and post-processing stages can take 
several minutes. This leaves several minutes for the various 
deep learning stages to process.

Intel® Distribution of OpenVINO™ Toolkit 
Optimization
Enabled by tools like the Intel Distribution of OpenVINO 
toolkit, Intel Xeon Scalable processors offer a flexible 
platform for AI model inferencing.

The toolkit’s offline Model Optimizer (MO) optimizes graph-
level constructs such as node merging, batch normalization 
elimination and constant folding. The resulting output is 
an intermediate representation (IR) .xml file and a .bin file 
that contains the model weights. In the online process, the 
toolkit’s Inference Engine optimizes MO output based on 
the target hardware: Intel® Xeon® processors, Intel® Core™ 
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processors, Intel® Processor Graphics, an Intel® field-
programmable gate array (FPGA), or Intel® Movidius™ Myriad™ 
vision processing units (VPUs). The Intel® Math Kernel 
Library for Deep Neural Networks (Intel® MKL-DNN) is an 
open-source performance library that significantly boosts 
performance of deep neural networks on Intel® CPUs.

Further performance gains can be obtained by running 
multiple instances of the toolkit on each of the sockets of a 
CPU (see Figure 2), instead of running just one instance of 
the toolkit in both sockets. Each instance is bound to one 
or more cores, which results in better core utilization. For 
example, as depicted above, eight instances of the toolkit are 
run on two Intel® Xeon® Scalable processor sockets.

Performance Comparison
Algorithmic Performance: The lobe segmentation model 
showed an average dice coefficient of 0.95 on Lung Tissue 
Research Consortium (LTRC) dataset. The nodule detection 
showed a performance of 89% sensitivity and specificity rate 
of one false positive per CT scan on a LIDC-IDRI dataset. The 
nodule segmentation model was trained and validated on 
a dataset from the Lung Image Database Consortium (LIDC) 
and Image Database Resource Initiative (IDRI). The model 
showed an average dice coefficient of 0.68 when compared 
against the intersection of contours annotated by the 
radiologists participating in the LIDC-IDRI study.

Compute Performance: Intel and Predible Health teams 
chose three different Intel Xeon Scalable processor SKUs as 
target implementation hardware. The Peak TFLOPS (single 
precision – FP32) for each processor are listed in Figure 3. All 
inferencing models use FP32 processing. Complete hardware 
and software configurations used for testing are provided in 
the Appendix.

Figure 3. Peak TFLOPS (FP32) for Intel Xeon CPUs.
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Figure 4. Performance of Intel Distribution of OpenVINO toolkit optimization versus PyTorch* baseline for Stages 1 and 2a.1 
Similar improvements were found for other stages.

As can be seen in Figure 4, the various modules in different 
stages of the Predible Lung CT model showed significant 
performance improvements. 

Figure 5 depicts the number of layers per module in the 
Predible model before and after optimizations, clearly 
indicating the power of the toolkit.

Three major optimization steps contributed to the 
performance improvements:

1.	 Intel Distribution of OpenVINO toolkit-based inferencing 
model optimization

2.	 Multi-instance Intel Distribution of OpenVINO toolkit 
running on multiple CPU sockets

3.	 Custom inferencing model optimizations

Custom inferencing model optimizations provided 
opportunities to merge multiple layers or expose more 
channels for processing that can then benefit from better 
hardware utilization. These custom optimizations are 
enabled in subsequent releases, to benefit the broader AI 
model community.

Figure 5. Number of layers per module before and after 
OpenVINO optimizations.

Processor Peak TFLOPS (FP32)

Intel® Xeon® Silver 4110 Processor 1.1

Intel® Xeon® Gold 6140 Processor 5.3

Intel® Xeon® Platinum 8168 Processor 8.3

Modules in Predible Lung 
CT model 

Baseline 
(PyTorch)

Optimized 
(OpenVINO)

Stage 1 – Lobe Segmentation 62 46

Stage 2a.1 – Nodule Detection 138 69

Stage 2a.2 – Nodule Detection 138 69

Stage 2a.3 – Nodule Detection 111 61

Stage 2b.1 – False Positive 
Reduction

30 20

Stage 2b.2 – False Positive 
Reduction

32 20

Stage 3 – Nodule Segmentation 61 35

Stage 1 Stage 2a.1
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Conclusion
Intel and Predible Health researchers realized three 
main conclusions from their work:

•	� Intel Distribution of OpenVINO Toolkit-based 
optimizations yield significant speed ups (up to 83X) 
on Intel Xeon Scalable processors vs. baseline 
configurations.  

•	 �Intel Xeon Scalable processors offer a range of 
performance/price options to meet a variety of 
workload needs.

•	� Thanks to the power of Intel AI technologies, 
Predible Health’s complex Lung CT model can be 
computed in less than a minute of processing time.
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Learn More
•	� �Intel Xeon Scalable processors 

https://www.intel.com/content/www/us/en/prod-
ucts/processors/xeon/scalable.html

•	 �Intel Distribution of OpenVINO Toolkit 
https://software.intel.com/en-us/openvino-toolkit

•	 �Predible Health 
http://prediblehealth.com/

Table 1 describes the number of patches per stage of the 
Lung CT model and the overall time taken for the completion 
of each stage using the chosen Intel Xeon processors. Total 
time taken for all modules is under a minute for Intel Xeon 
Gold and Platinum CPUs and under 5 minutes for Intel Xeon 
Silver CPUs, clearly highlighting tradeoffs between latency 
and cost. For dedicated compute assets executing only 
one inferencing model, it may make sense to pick an entry 
processor that meets throughput needs while keeping costs 
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1 Lobe 
Segmentation 324 8 1 0.4 6 1 0.12 6 1 0.1 16.4 6.5 5.4

2a

Nodule 
Detection -1 84 4 1 3.2 6 1 0.87 12 1 1.3 67.2 12.2 9.1

Nodule 
Detection -2 84 4 1 3.2 6 1 0.87 12 1 1.3 67.2 12.2 9.1

Nodule 
Detection -3 84 4 1 2.41 6 1 0.64 4 1 0.31 50.6 9.0 6.5

2b

False Positive 
Reduction -1 100 4 1 1.05 6 1 0.29 6 1 0.2 26.3 4.9 3.4

False Positive 
Reduction -2 100 4 1 1.05 6 1 0.28 6 1 0.2 26.3 4.8 3.4

3 Nodule 
Segmentation 30 2 1 2.22 6 1 1.19 2 1 0.3 33.3 6.0 4.5

Total time for all modules (secs.)  287.2 55.4 41.4

Table 1. Time taken per module in each stage of the Predible Lung CT model.

low. For shared compute assets, where several inferencing 
models are executed concurrently and may have differing 
throughput and latency needs, Gold and Platinum parts offer 
the needed compute power and agility to handle concurrent 
invocations of models with differing performance needs. Also 
depicted in Table 1 is the choice of instance and batch size 
for each module in various stages of the Predible Lung CT 
model that provides the best performance on different CPUs.
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Appendix A: Hardware and Software Test Configurations

 Platinum Gold Silver

Tested By Intel Intel Intel

Test Date 02-07-2019 02-07-2019 02-07-2019

Platform S2600STQ S2600WFQ S2600BPB

#Nodes 1 1 1

#Sockets 2 2 2

CPU 8168 6140 4110

Cores per socket/Threads per socket 24/24 18/18 8/8

Serial No cpu0 - - -

Serial No cpu1 - - -

ucode 0x200005e 0x200005e 0x200005e

HT off off off

Turbo off off off

BIOS Version SE5C620.86B.00.01.0 
009.101920170742

SE5C620.86B.00.01.0 
009.101920170742

SE5C620.86B.00.01.0 
015.110720180833

System DDR Mem Config: Slots/Cap/Run-speed 12/16GB/2666 12/16GB/2666 12/16GB/2666

System DCPMM Config: Slots/Cap/Run-speed - - -

Total Memory/Node 192GB 192GB 192GB

Storage-Boot
INTEL SSDSC2KB48 
480GB

INTEL SSDSC2KB48 
480GB

INTEL SSDSC2KB96 
960GB

Storage-Application - - -

NIC - - -

PCH - - -

Other HW (Accelerator) - - -

OS Ubuntu 16.04.6 LTS Ubuntu 16.04.6 LTS Ubuntu 16.04.6 LTS

Kernel
GNU/Linux 
5.1.5-050105-generic 
x86_64

GNU/Linux 
5.1.5-050105-generic 
x86_65

GNU/Linux 
5.1.5-050105-generic 
x86_66

Mitigation Variants Mitigated Mitigated Mitigated

Solution Brief | Deep Learning for Lung Cancer Detection

5

Workload & 
Version Stage 1 Stage 2a.1 Stage 2a.2 Stage 2a.3 Stage 2b.1 Stage 2b.2 Stage 3

Compiler 5.4.0 5.4.0 5.4.0 5.4.0 5.4.0 5.4.0 5.4.0

Libraries

MKL-DNN 
(OpenVINO™ 
inbuilt 
version)

MKL-DNN 
(OpenVINO™ 
inbuilt 
version)

MKL-DNN 
(OpenVINO™ 
inbuilt 
version)

MKL-DNN 
(OpenVINO™ 
inbuilt 
version)

MKL-DNN 
(OpenVINO™ 
inbuilt 
version)

MKL-DNN 
(OpenVINO™ 
inbuilt 
version)

MKL-DNN 
(OpenVINO™ 
inbuilt 
version)

Frameworks 
Version

OpenVINO™ 
2019 R1

OpenVINO™ 
2019 R1

OpenVINO™ 
2019 R1

OpenVINO™ 
2019 R1

OpenVINO™ 
2019 R1

OpenVINO™ 
2019 R1

OpenVINO™ 
2019 R1

Dataset PH dataset PH dataset PH dataset PH dataset PH dataset PH dataset PH dataset

Topology 3D Unet 3D Resnet 3D Resnet 3D Resnet 3D Wide 
Resnet

3D Wide 
Resnet 3D Unet

Batch Size 1 1 1 1 1 1 1
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1 For references on this and other statistics, please see the Deep Learning for Lung Cancer Detection whitepaper by Intel Corporation and Predible Health, 2019.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may 
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product 
when combined with other products. For more complete information visit www.intel.com/benchmarks.
Performance results are based on testing by intel Corporation as of July 10, 2019 and may not reflect all publicly available security updates. See configuration disclosure for details.
No product or component can be absolutely secure.
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimiza-
tions include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not 
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are 
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice Revision #20110804/CVN/ACG
Intel, the Intel logo, Intel Xeon, Intel Core, OpenVINO and Movidius are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others. 
© Intel Corporation


