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MOPED: informed weights priors in Bayesian DNN Results

Mean Field Variational Inference in Bayesian DNN

Conclusion

*equal contribution

Evidence lower bound (ELBO) loss:

LVI := - E𝑞
𝜃
(ω)[𝑙𝑜𝑔. 𝑝(𝑦|𝑥, ω)] + 𝐾𝐿[𝑞𝜃 ω ||𝑝 ω ]

𝑝(𝑦∗|𝑥∗, 𝐷) = ∫ 𝑝(𝑦∗|𝑥∗, ω) 𝑞𝜃 ω 𝑑ω ≈
1

𝑇
 𝑖=1
𝑇 𝑝( 𝑦∗|𝑥∗, ωi) ; ωi ∼ 𝑞𝜃 ω

Predictive distribution through Monte Carlo sampling:

𝑝 ω 𝑥, 𝑦 =
𝑝 𝑦 𝑥,ω 𝑝 ω

𝑝(𝑦|𝑥)

Posterior distribution:

Specifying meaningful weight priors in Bayesian deep neural network (DNN) is a

challenging problem, particularly for scaling variational inference to larger models

involving high dimensional weight space. We propose MOPED (MOdel Priors

Extracted from Deterministic DNN) method to choose informed weight priors in

Bayesian DNN using Empirical Bayes framework.

Robustness to out-of-distribution (OOD) data

We illustrate with mean-field variational inference (MFVI) in Bayesian DNNs, where each 

weight  is independently sampled from the Gaussian distribution N  𝜔 , 𝑙𝑜𝑔 1 + 𝑒𝜌

where, ωd represents weights obtained from standard DNN model of same architecture as BNN.

δ is initial perturbation factor in terms of decimal percentage of the mean.

• The proposed method enables scaling of variational inference to larger Bayesian

DNN models on complex datasets, and provides reliable uncertainty quantification

without compromising on the accuracy provided by the deterministic DNNs

• We empirically evaluated the proposed approach on real-world tasks including

image classification, audio classification and video activity recognition with varying

complexity of Bayesian DNN architectures

Approx. variational posterior:

𝑞𝜃(ω) ≈ 𝑝(ω│𝑥,𝑦)

𝑞𝜃(ω) = N ω µ , 𝑑𝑖𝑎𝑔(𝜎2)) ; µ, 𝜎 ∈ 𝑅𝐷

Table: Comparison of validation accuracy with varying complexity of Bayesian DNN architectures 

on large-scale datasets and various input modalities (image, audio, video).

Figure 1: Precision-Recall curve Figure 2: AUPR for different percentage of          

retained data based on model uncertainty

Evaluating model performance and uncertainty quantification on large-scale models

Figure 3 (a) and (b): AUPR for different percentage of  retained data based on model uncertainty.

(a) ResNet101-C3D on UCF101 and (b) VGGish on UrbanSound8K

 Bayesian DNNs with random initialization of weight priors had difficulty in

converging to optimal solution for the large-scale models. Whereas, MOPED

method with informed priors enabled large-scale models to converge while

achieving similar or better predictive accuracies as compared to standard DNN.

 Our proposed method (MOPED_MFVI) provides higher AUPR values than

baseline MFVI and also AUPR increases as most uncertain predictions are

ignored based on the model uncertainty, indicating our method provides better

performance and reliable uncertainty estimates.

 Results show that proposed MOPED method based on Empirical Bayes enables

scaling of variational inference to larger Bayesian DNN models. Thus offering a

new method for statistical deep learning community to apply Bayesian MFVI on

large-scale real-world tasks.

 Model confidence/uncertainty measures obtained from the proposed method are

reliable to identify out-of-distribution data and out-performs other probabilistic deep

learning methods.

Figure 4: Accuracy vs Confidence curves while 

testing on both MNIST and not-MNIST (OOD) data

Figure 5: density histogram of model 

uncertainty for in-distribution and OOD
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