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Abstract

We express our emotional state through a range of ex-
pressive modalities such as facial expressions, vocal cues,
or body gestures. However, children on the Autism Spec-
trum experience difficulties in expressing and recognizing
emotions with the accuracy of their neurotypical peers. Re-
search shows that children on the Autism Spectrum can be
trained to recognize and express emotions if they are given
supportive and constructive feedback. In particular, pro-
viding formative feedback, (e.g., feedback given by an ex-
pert describing how they need to modify their behavior to
improve their expressiveness), has been found valuable in
rehabilitation. Unfortunately, generating such formative
feedback requires constant supervision of an expert who as-
sesses each instance of emotional display. In this work,
we describe a system for automatic formative assessment
integrated into an automatic emotion recognition setup.
Our system is built on an interpretable machine learning
framework that answers the question of what needs to be
modified in human behavior to achieve a desired expres-
sive display. It propagates the desired changes to human-
understandable attributes through explanation vectors op-
erating on a shared low level feature space. We report ex-
periments conducted on a childrens voice data set with ex-
pression variations, showing that the proposed mechanism
generates formative feedback aligned with the expectations
reported from a clinical perspective.

1. Introduction

The neuro-developmental conditions affecting commu-
nication and behavioral skills are referred to as Autism
Spectrum Conditions (ASC). The main characteristics ac-
companied with ASC can be listed as having difficulty in so-
cial communication and interaction with other people, hav-
ing restrictive interest, repetitive behaviors, and showing
symptoms that restrict these individuals from functioning

properly at any areas of life such as work or school [5]. Re-
search shows that individuals with ASC particularly strug-
gle with recognizing affective or mental states expressed by
others and expressing their own inner states [7]. These de-
ficiencies in recognition and expression of affect act as so-
cial communication barriers for individuals with ASC, keep
them from developing healthy social relationships, and lead
to social exclusion.

There have been numerous technological developments
that target ASC population to teach them emotion-related
skills. Technologies such as ICPS - I Can Problem-
Solve [3], Emotion Trainer [2], Lets Face It [9], or Min-
dreading [4] are examples that target to train individuals on
emotion recognition and social communication skills. How-
ever, there is a lack of interactive tools and technologies for
assisting individuals on the Autism spectrum in their quest
to improve their skills for expressing emotions.

This work, is part of the European Union project called
ASC-Inclusion-Enlarged [1], which aims to address dif-
ficulties associated with training ASC children to better
express their own emotions and assess others’ emotions.
When assessing the emotional expressiveness of an individ-
ual, automated emotion recognition technologies through
any or all of the expressive modalities of face, voice, or ges-
tures can be used. The emotion performed by the subject
can be evaluated through inference algorithms and the out-
put can be used to inform whether the attempt of display-
ing a particular emotion was successful or not. However,
such an approach lacks any feedback on what they can do
to improve their expressiveness. In this work, we propose a
formative assessment approach to include a feedback mech-
anism which would provide the subject with specific and
comprehensible guidance for improved performance. By
receiving easy-to-understand and targeted corrective feed-
back, individuals have the opportunity to learn how they
should adjust their facial, vocal, or gestural behavior to
show prototypical emotions.

The paper is organized as follows: First, in Section 2, the
proposed formative assessment approach is explained. Sec-
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tion 3 summarized the experimental results on the sample
voice data. Section 4 concludes the paper, outlining future
directions as well.

2. Proposed Formative Feedback Generation
Scheme

The typical scenario for formative feedback involves a
person displaying a performance, with a target label in
mind. In the case of Autism rehabilitation, this is a child
who attempts to display a target emotion through a vari-
ety of channels (facial displays, voice, body language, ges-
tures). In the typical scenario, the performer fails to express
the emotion successfully (hence the need for the formative
feedback). The goal of the formative feedback module is
to generate human understandable explanations of what be-
havioral changes would move the performed instance closer
to the desired target.

Formative feedback is generated on a per-instance ba-
sis. Hence, there are two main inputs to the formative feed-
back module: features extracted from the performance in-
stance, and the label of the expected (target) class. The over-
all scheme describing how these two inputs are converted
into formative feedback is outlined in Figure 1. Implicitly,
there is a third input: the classifier that classifies user in-
put. In general, this classifier can come in any form (e.g.,
an SVM, a PGM, or a Deep Network), and our scheme does
not restrict the system designer to adopt a particular kind of
classifier. Hence, to generalize the scheme to any kind of
classifier, a probabilistic black-box classification module is
obtained from the input classifier through Parzen window
estimation (top left in Figure 1), which serves as the third
input to the formative feedback system. Using the idea of
the explanation vectors of Baehrens et al. [6], these three
inputs are used to obtain feature modifications required to
achieve the target classification on an instance basis.

Using these explanations, the original feature can be
modified to convert the input instance into one whose pre-
diction decision matches the target. The difference between
the original and the modified feature sets can be used to de-
scribe the necessary corrections. However, providing cor-
rections at the feature level will not be comprehensible from
a user perspective. Therefore, it is necessary to define high-
level attributes and obtain the necessary alterations in terms
of these attributes. To generate the formative feedback, at-
tribute extraction is run on both the original and the mod-
ified feature sets, and the difference between the original
attributes (from original feature set) and the modified at-
tributes (from the modified feature set) is used to generate
the semantically meaningful formative feedback to the sub-
ject.

The two main contributions of this work are as follows:
First of all, the features are updated in an iterative man-
ner to find the minimum necessary alteration. Secondly, for

the feedback to be semantically meaningful, the necessary
feature modifications are mapped to a higher-level attribute
space. In the following three subsections, we describe the
details of how we generate explanation vectors, modify the
features iteratively until convergence, and obtain semanti-
cally meaningful corrections.

Figure 1. General scheme for the formative feedback generation
approach.

2.1. Explanation Vector Generation

Let’s assume that we have a training set of d-dimensional
points X = {x1,x2, . . . ,xn} with class labels Y =
{y1, y2, . . . , yn} ∈ {1, . . . , C}, where we have C distinct
classes of output labels and the joint distribution P (X,Y )
is unknown. The explanation vector of a given instance x0

for a target class label c can be computed as the derivative
of the conditional probability of the given class label for the
given input instance:

ζc(x0) =
∂

∂x
P (Y 6= c|X = x)

∣∣∣
x=x0

(1)

Here, ζc is a d-dimensional vector like the original input
instance, defining the flow away from the corresponding
class: The entries with high absolute values will point out
features that have high influence on the classification deci-
sion, where positive and negative signs indicate individual
features whose values should be decreased or increased, re-
spectively, to better resemble the target class.

To generate explanations for an unknown classifier g(·),
first of all we have to estimate the classifier. Then the ex-
planation vector will be computed using the estimation ĝ(·)
and the class label given by the classifier. In this work, we
have considered Kernel Density Estimation [8] to estimate
the joint probability for the given class label:

p̂σ(x, y = c) =
1

n

∑
i∈Ic

kσ(x− xi) (2)

where kσ(·) is the kernel function and Ic is the index set for
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the given class. Here, we employed Gaussian kernel and es-
timated the conditional probability distribution as follows:

p̂σ(y = c|x) ≈
∑
i∈Ic kσ(x− xi)∑
i kσ(x− xi)

(3)

The explanation vector for instance z and expected class
label c can be defined as follows:

ζ̂c(z) =
∂

∂x
p̂σ(y 6= g(z)|x)

∣∣∣
x=z

(4)

Using g(z) outputs instead of c class labels allows us to
interpret the classification decisions of our black-box clas-
sifier (assuming ĝ(·) approximates g(·) well).

2.2. Iterative Feature Modification

The explanation vector defines the direction of the flow
away from the corresponding class. However, the magni-
tude of the vector does not embody any information about
how much change is needed to resemble the target class bet-
ter. As in the gradient descent algorithm, the explanation
vector can be computed in an iterative manner until conver-
gence to the target class is achieved. Moreover, a predefined
step size can be employed for each iteration. As a fixed step
size, we compute the minimum inter sample distance:

ds = min
i∈{1,...,n},j∈{1,...,n}\i

||xi − xj || (5)

At each iteration, using the directional information residing
in the explanation vector and the calculated step size, the
input instance (feature) is modified:

z(t+1) = z(t) −
ds · ζ̂c(z(t))
|ζ̂c(z(t))|

(6)

After each iterative modification, the decision of the classi-
fier (either g(·) or ĝ(·)) will be checked to see if conver-
gence to the target class is achieved. Once convergence
is reached, iterative computation of the explanation vectors
and feature updates will result in a modified feature set com-
prising the minimal amount of change needed.

2.3. Attribute-based Feedback Generation

Once convergence at the feature space is obtained, the
difference between the original and the modified feature set
gives the minimum change needed for the instance to be
classified from the target class. However, computing this
difference at the feature space and providing it as a feedback
to the user will not be comprehensible as the feature space
can be very high dimensional and even the little changes
needed at feature level would fire up in the difference vector.
In this work, we propose to switch to a high-level attribute
level which would enable us to provide semantically mean-
ingful feedback to the user. The high-level attribute space

can either be defined by careful selection of meaningful set
of features, or it can require to switch to this high-level
space by running pre-trained attribute extractor. It should
be noted that defining semantically meaningful attributes is
highly dependent on the feature space and the classification
problem.

3. Experimental Results on Voice Modality
3.1. Voice Database and Emotional-Attributes

In order to test our proposed formative feedback gener-
ation approach, we experimented with a sample emotional
voice dataset, consisting of 1534 instances labeled for 27
emotional classes. For each instance, 6373 vocal features
were available.

As an initial step, we defined possible forms of se-
mantically meaningful attributes for the voice modality
considering a variety of affective states. We mainly re-
ferred to the relations shortlisted by our clinical partners,
where modality-specific characteristics are given for differ-
ent emotions. The attributes shortlisted are as follows: (1)
pitch, (2) pitch variation, (3) loudness, and (4) speech rate.
For our initial analysis, we focused on two basic emotions
of Happy and Sad. Voice attributes and their expected as-
sociations to these two basic emotions are given in Table 1.
For the samples of these two emotions in our database, we
binarized attributes (High or Low) considering their respec-
tive location to the attribute mean over all emotional in-
stances. The histogram for the attribute combinations is
plotted in Figure 2. As can be seen from this figure, the sam-
ple instances do not always resemble the attribute-emotion
associations, where it would be expected to have most of the
sad examples at the left extreme, whereas the happy samples
would gather at the right side.

Table 1. Attribute candidates and attribute-emotion associations
for the voice modality. (H and L stand for high, and low values.)

Happy Sad
Pitch H L
Pitch Variation H L
Loudness H L
Speech Rate H L

3.2. Classifier Approximation with Kernel Density
Estimation

As visualized in Figure 2, a simple thresholding ap-
proach for formative assessment, where we would decide
on the correctness of an attribute using its respective loca-
tion to the threshold (e.g. attribute mean), would fail. The
proposed approach based on explanation vector generation
is expected to yield more accurate explanations related to
classifier’s decisions.

For our initial experiments, we focused on the two-class
classification problem (Happy vs. Sad), and utilized only
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Figure 2. Histogram for binarized attribute combinations is given,
where the attributes are decoded in the order of pitch, pitch varia-
tion, loudness, and speech rate. Instances of happy and sad emo-
tion labels are shown with blue and red bars, respectively.

the instances of these two classes. Keeping the ratio of
the two emotion instances approximately the same, we have
spared 14 happy and 11 sad instances for testing. Since we
have a limited number of training examples (60 happy and
45 sad), we have employed Leave-One-Out cross validation
for hyper-parameter optimization. This randomized separa-
tion of training and test sets is handled for 20 repetitions.
The mean and standard deviation of the optimum hyper-
parameter and the test accuracy obtained with the KDE are
summarized in the first two columns of Table 2.

3.3. Explanation Vectors and Modified Features

After the classifier is estimated with the KDE, the ex-
planation vectors for a single iteration can be computed as
given in Equation (4). The explanation vector generation
and feature modification steps will be handled in an itera-
tive manner, where the iteration structure and the conver-
gence rule is given in Section 2.2. For our preliminary ex-
periments, where we have considered two emotion classes,
we have considered each instance of a class as a misex-
pressed instance of the opposite class: For example, for a
happy instance, the explanation vector generation and fea-
ture modification iterations are run, where the convergence
rule is being classified as from the sad class. The mean
and standard deviation of the average number of modifica-
tion steps required are given in the last column of Table 2
(calculated over 20 repetitions). As these results indicate,
a sample from one class can be modified to be classified as
from the other class in 5.82 steps in average.

For the voice modality, the attributes that we want to
give feedback on are directly included in the input features.
Therefore, we directly investigated the alterations caused
on these four attributes. Once again, the attribute-specific
means of all instances from all six basic emotions are used
as thresholds to binarize the attribute values. In Figure 3,
each row gives the bar plots of Happy (left) and Sad (right)

Table 2. The mean and standard deviation of the optimum hyper-
parameter, the test accuracy obtained with the KDE, and the aver-
age number of steps required to move to the opposite class (calcu-
lated over 20 repetitions).

optimum σ test accuracy (%) avg. step count
µ 8.06 73.60 5.50
σ 0.74 11.78 0.25

instances, when the attribute values are considered as ei-
ther Low or High when compared with the attribute-specific
threshold. For example, let’s consider the top-left plot: For
Happy instances, the features are modified so that each in-
stance is classified as from the Sad class. Here, the bar
plots for the pitch attribute are given for before modifica-
tion and for after modification. As expected, the number of
instances with low pitch is increased, whereas the number
of instances with high pitch value is decreased. This trend
is opposite for the Sad instances (top-right plot). Moreover,
we see similar trends for the other attributes.

4. Conclusion and Future Directions

In this work, we propose a method to generate compre-
hensible corrective feedback to guide children with ASC in
expressing their emotions better. Based on the explanation
vector generation approach of Baehrens et al. [6], we pro-
pose to modify features in an iterative manner until they
resemble the target class, and the minimum required alter-
ations are expressed in terms of high-level attributes to pro-
vide semantically meaningful corrections. The initial ex-
periments on the voice modality showed that we were able
to generate feedback aligned with the expectations from a
clinical point of view.

As future directions, we target to evaluate the gener-
ated formative feedback from a user perspective, assess-
ing whether they are semantically meaningful. For perfor-
mance improvement, use of a larger training set is neces-
sary. Moreover, the current module can be extended to work
on a larger set of emotions. Moreover, a separate set of
high-level attributes that do not reside in the feature space
can be considered when providing the corrective feedback.
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