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Figure 1. GE Healthcare’s AIRx™ automatically aligns MR scans for better  
diagnostic imaging.

GE Healthcare’s Artificial Intelligence Prescription (AIRx™) is an automated 
workflow tool for magnetic resonance (MR) brain scanning that has received 510(k) 
clearance from the FDA. Built on GE Healthcare’s Edison platform, AIRx uses state-
of-the-art artificial intelligence (AI) to precisely identify and align MR scans for 
diagnostic neuroimaging (Figure 1). AIRx automates slice prescriptions and reduces 
redundant, manual steps by using AI algorithms built into the MR technologist’s 
existing workflow. This enhanced process allows for consistent, repeatable scan 
alignment to help physicians better monitor a patient across longitudinal studies 
which may be several months apart. GE Healthcare estimates that using AIRx may 
reduce the set-up time for an MR study by 40 to 60% while increasing accuracy and 
consistency of the scans.

GE Healthcare partnered with Intel to optimize the inference speed of AIRx on their  
existing Intel® Xeon® CPU-based platforms. Using software optimizations, including 
the Intel® Distribution of OpenVINO™ Toolkit, GE Healthcare was able to reduce the  
total inference time from 2.85 seconds down to 0.659 seconds without the additional  
cost of accelerators— improving patient care without increasing healthcare costs1. 

Software optimizations, including the Intel® Distribution of OpenVINO™ Toolkit, 
produce a 4.3x speedup for identifying and aligning MR scans for diagnostic 
neuroimaging on Intel® Xeon® Processor-based systems.1
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Topology and Data
AIRx relies on 11 separate convolutional neural network (CNN) topologies which consider both 3-dimensional and  
3-plane (axial, coronal, sagittal) 2-dimensional MR scans. CNNs are a class of deep learning networks commonly applied  
to analyzing visual data. These 2D and 3D Cascaded CNN models are combined to automatically detect the scanning target 
(e.g. hippocampus, pituitary, circle of Willis) and determine the best alignment for the scanning protocol. 

The total workload was divided into three distinct tasks as 
shown in Figure 2:

1. �LocalizerIQ-Net is a 5-layer, dyadic reduction 2D CNN 
which determines if a given localizer image (coronal, 
axial, sagittal) is suitable to identify the target anatomy. If 
LocalizerIQ-Net determines an unsuitable localizer scan, 
then it prompts the MR technologist to repeat the initial 
scout scan.

2. �Coverage-Net is a semantic segmentation CNN (2D U-Net 
variant) which determines the extent of the target anatomy 
within the localizer scan. This makes the algorithm 
generalizable to variations in patient anatomy. It consists of 
3 models executed in parallel that cover the coronal, axial, 
and sagittal planes of the MR.

Figure 2. AIRx™ workflow pipeline. DL-based intelligent scan placement framework. LocalizerIQ-Net classifies if the scan is 
suitable for the target anatomy. Coverage-Net determines the extent of the target anatomy in the scan, and Orientation-Net 
determines the best orientation and location of the target anatomy.

Figure 3. Examples of ground truth labels used for Coverage-Net and Orientation-Net. (a,b) Coverage-Net ground truth masks 
for sagittal and coronal localization scans. (c,d) Mid-sagittal plane (MSP) label (red) and the predicted plane (white) (e) Anterior 
commissure-Posterior commissure (ACPC) plane (f) optic nerve plane (g) hippocampal plane.

3. �Orientation-Net is a 3D U-Net CNN which determines the 
best orientation and location to target the desired anatomy 
from the localizer images. This consists of three sub-
models: two mid-sagittal plane (MSPNet) models (axial 
and coronal), executed in parallel so we only consider the 
maximal latency for these two models, and one Anterior 
Commissure-Posterior Commissure (ACPC) model.

The proprietary GE Healthcare dataset was generated from  
a global study of more than 1,300 studies using both 1.5T 
and 3.0T GE SIGNA™ MR scanners. For 2D models accepting  
a 3D volume input (e.g. Coverage-Net) the input shape 
varied in size between 288x220 and 320x320 with anywhere 
between 9 to 20 slices of thicknesses from 1.0 mm to 4.0 mm 
each. For 3D models, the input shape was always 256x256 
with 9 slices. Scans also varied in contrast and MR protocols. 
Expert radiologists and technicians created the ground truth 
labels. Figure 3 shows examples of the raw data and ground 
truth labels.
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 LocalizerIQ-Net was trained on 29,000 images (with online image augmentation) and tested on 700 images. It obtained a 
classification accuracy of 99.2%. Coverage-Net and Orientation-Net were trained on 21,770 3-D MR volumes (with online 
image augmentation) and tested on 505 volumes. Orientation-Net achieved a mean distance error of < 1 mm and a mean 
angle error of < 3° which was determined acceptable by expert radiologists. Prospective studies confirmed that the trained 
model produced excellent results when given new data (Figure 4), and was also robust for studies with significant pathology 
that otherwise would have been difficult to correctly orient.

Benchmarking Metric
Several models within the workload could be run in parallel 
and take advantage of the multicore performance capabilities 
of Intel® CPUs. The remaining topologies were executed 
sequentially (Figure 2). The service level agreement for the 
workload was set at a maximum latency of 2.5 seconds for 
the total inference time of the Coverage-Net, MSPNet, and 
ACPC models on a GE Healthcare Gen6-P image compute 
node (3.10.0-862.el7.x86_64; Intel® Xeon® Processor E5-
2680 v3, 2.5 GHz, 12 cores per socket, 2 sockets, 96 GB DDR4 
RAM). GE Healthcare determined that this was the maximum 
allowable latency at which the MR technologist would not 
notice a disruption in routine workflow. The mean and 
standard deviation of 50 consecutive runs were recorded. 

Figure 4. Prospective testing at new clinical sites showed that AIRx™ automatically produced consistent MR scans (bottom) 
regardless of patient positioning (top). This is desirable in longitudinal studies.

Optimizations

Intel® Distribution of OpenVINO™ Toolkit
Intel Distribution of OpenVINO Toolkit (2018 R4) was used to 
optimize the model for inference on Intel architectures. The 
toolkit’s model optimizer is a Python* script that accepts a 
pre-trained TensorFlow* model (and other model formats), 
strips the TensorFlow-specific framework from the model, 
and performs several graph-level optimizations (Figure 5). 
The toolkit’s Inference Engine leverages the multithreading 
operations from the Intel® Math Kernel Library for Deep 
Neural Networks (Intel® MKL-DNN) to take advantage of the 
Intel® Advanced Vector Extensions 512 (Intel® AVX-512) SIMD 
instructions found in modern multi-core Intel CPUs. Figure 
6 illustrates demonstrate how layer fusion combines two 
or more operations within the same compute to reduce the 
number of separate compute operations during inference.
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OpenVINO™ Model Server
GE Healthcare wanted to deploy multiple toolkit models 
into flexible, high performance, scalable components. To 
accomplish this, Intel developed the OpenVINO™ model 
server, a gRPC inference interface compatible with the 
TensorFlow Serving API that leverages the toolkit’s faster 
inference engine for the backend. This speeds up the 
execution of the model on Intel CPUs and allows it to be 
used with other Intel® hardware, such as FPGAs and Intel® 
Movidius™ VPUs. The model server can be deployed on a 
bare metal server, a virtual machine, or a Docker container, 
making it suitable for a Kubernetes HPC environment where 
models can be served and load balanced across nodes.

Figure 5. The Intel® Distribution of OpenVINO™ Toolkit’s model optimizer transforms a pre-trained deep learning model for 
faster inference on Intel hardware.

Figure 6. Layer Fusion. During inference operations such 
as batch normalization and scaling can be fused with the 
convolutional kernels and reduce the number of operations 
in the inference graph.

Before Layer Fusion After Layer Fusion

Figure 7. OpenVINO Model Server
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3D Deep Learning Primitives
A significant portion of the total AIRx workload relies on deep learning topologies that use 3D tensor operations such 
as 3D Convolution, MaxPooling, and ReLU. The additional tensor dimension greatly increases the memory footprint and 
computational complexity of these algorithms. The Intel Distribution of OpenVINO toolkit leverages Intel MKL-DNN’s use of 
Intel AVX-512 single instruction multiple data (SIMD) hardware instructions which efficiently scales the operations across 
multiple CPU cores and balances data pre-fetching, cache blocking, and data formatting to promote optimal temporal and 
spatial locality of the data. Simply stated, these optimizations greatly improve the inference latency and throughput when 
compared with standard, non-optimized TensorFlow. 

Results

Figure 8 shows the improvement in the AI portion of the AIRx workload. By replacing the standard, unoptimized TensorFlow 
1.6 models with the Intel OpenVINO models, the latency of the 2D and 3D deep learning models dropped from 0.636 seconds 
to 0.307 seconds. When combined with improvements in the non-AI portion of the workload—namely, optimizations in the 
Docker container structure, better multi-core/multi-threading balance, and changing the input of the model server from 
a pixel array to a binary format—the latency of the end-to-end AIRx workload dropped from 2.85 seconds down to 0.659 
seconds. This is a 4.3x improvement in the end-to-end AIRx workload.

Figure 8. GE Healthcare achieved a 2x improvement in 
inference latency on the AIRx deep learning models by 
replacing the standard, unoptimized TensorFlow 1.6 models 
with the Intel OpenVINO models

Figure 9. Total workload latency speed up achieved by 
overall software optimizations, including AI inference 
optimization shown in Figure 8
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HARDWARE USED FOR TESTING
GE Gen6-P image 
compute node

3.10.0-862.el7.x86_64

Processor Intel® Xeon® Processor E5-2680 v3

Speed 2.5 GHz

Cores 12 cores per socket, Docker container 
has access to 22 CPU cores

Sockets 2

RAM 96 GB (DDR4)

Hyperthreading Enabled

Security Updates Spectre and Meltdown Updates Applied

SOFTWARE USED FOR TESTING
TensorFlow version 1.6 without Intel MKL-DNN optimizations

Gcc version 2.8.5

Python version 2.7

OpenVINO version 2018 R4 (Model Server v0.2)

OS HeliOS 7.4 (Nitrogen)

Conclusion
GE Healthcare’s software optimizations, including the use of the Intel Distribution of OpenVINO™ toolkit, enabled them to 
optimize the inference speed of AIRx by over 4x on the Intel Xeon CPU architecture without the additional cost of accelerators, 
improving patient care without increasing healthcare costs. The OpenVINO Toolkit Model Server allows GE Healthcare to 
quickly scale the benefits of CPU inference across several product lines through their Edison platform. AIRx leverages the 
Edison platform to advance GE Healthcare’s goal of offering intelligent applications and smart devices at the edge.

Notices and Disclaimers
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  
Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully  
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information  
visit www.intel.com/benchmarks. 

Performance results are based on testing by GE Healthcare from November 2018 through January 2019 and may not reflect all publicly available security 
updates.  No product or component can be absolutely secure. Intel does not control or audit third-party data.  You should review this content, consult other 

sources, and confirm whether referenced data are accurate.

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to 
Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, 
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are 
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to 
the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice Revision #20110804

1Configurations: 
 Original model was trained using TensorFlow 1.6 for Python 2.7 without Intel optimizations and converted by GE Healthcare to OpenVINO 2018 R4.
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