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Abstract

With the recent advancements in Artificial Intelligence (AI), Intelligent Virtual
Assistants (IVA) such as Alexa, Google Home, etc., have become a ubiquitous part
of every home. Currently, such IVAs are mostly audio-based, but going forward,
we are witnessing a confluence of vision, speech and dialog system technologies
that are enabling the IVAs to learn audio-visual groundings of utterances. This
will enable agents to have conversations with users about the objects, activities
and events surrounding them. In this work, we present three main architectural
explorations: 1) investigating ‘topics’ of the dialog as an important contextual
feature for the conversation, 2) exploring several multimodal attention mechanisms
during response generation and 3) incorporating an end-to-end audio classification
ConvNet, AclNet, into our architecture. We discuss detailed analysis of the experi-
mental results and show that our model variations outperform the baseline system
presented for the Audio Visual Scene-Aware Dialog (AVSD) task.

1 Introduction

We are witnessing a confluence of vision, speech and dialog system technologies that are enabling
the IVAs to learn audio-visual groundings of utterances and have conversations with users about the
objects, activities and events surrounding them. Recent progress in visual grounding techniques [3, 6]
and audio understanding [7] are enabling machines to understand shared semantic concepts and listen
to the various sensory events in the environment. With audio and visual grounding methods [17, 8],
end-to-end multimodal Spoken Dialog Systems (SDS) [14] are now being trained to meaningfully
communicate in natural language about the real dynamic audio-visual sensory world around us. In
this work, we explore the role of ‘topics’ of the dialog as the context of the conversation along with
multimodal attention into an end-to-end audio-visual scene-aware dialog system architecture. We
also incorporate an end-to-end audio classification ConvNet, AclNet, into our models. We develop
and test our approaches on the Audio Visual Scene-Aware Dialog (AVSD) dataset [1, 2] released as
part of the 7th Dialog System Technology Challenges (DSTC7) task, showing that some of our model
variations outperform the AVSD baseline model [9].
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Figure 1: Architecture of Our System

2 Model Description

In this section, we describe the main architectural explorations of our work as shown in Figure 1.

Adding Topics of Conversations: Topics form a very important source of context in a dialog.
Charades dataset [15] contains videos on common household activities such as watching TV, eating,
cleaning, using a laptop, sleeping, and so on. We train Latent Dirichlet Allocation (LDA) [5] and
Guided LDA [11] models on questions, answers, QA pairs, captions and dialog history. Since we
are interested in identifying domain-specific topics such as entertainment, cooking, cleaning, resting,
etc., we use Guided LDA to generate topics via seed words. A detailed list of sample seed words
provided to Guided LDA for the 9-topics configuration is presented in Table 1. These seed words are
constructed by identifying a set of most common nouns (objects), verbs, scenes, and actions from the
Charades dataset analysis [15]. Generated topic distributions are incorporated as features into our
models or used to learn topic embeddings.

Attention Explorations: We explore several configurations of the attention-based model where at
every step, the decoder attends to the dialog history representations and audio/video (AV) features to
selectively focus on relevant parts of the dialog history and AV. We calculate the attention weights
[4, 16] corresponding to every dialog history turn, multimodal features and the decoder representation,
and apply the weights to the history and multimodal features to compute the relevant representations.
These help create a combination of the dialog history and multimodal context that is richer than the
single context vectors of the individual modalities. We append the input encoding along with the AV
multimodal feature encodings and pass that to the decoder LSTM for learning the output encodings.

Table 1: Sample of Seed Words for 9 Topics

Topic Seed Words

Entertainment/LivingRoom living, room, recreation, garage, basement, entryway, television, tv, phone, laptop, sofa, chair, couch, armchair, seat, picture, sit ...

Cooking/Kitchen kitchen, pantry, food, water, dish, sink, refrigerator, fridge, stove, microwave, toaster, kettle, oven, stewpot, saucepan, cook, wash ...

Eating/Dining dining, room, table, chair, plate, fork, knife, spoon, bowl, glass, cup, mug, coffee, tea, sandwich, meal, breakfast, lunch, dinner ...

Cleaning/Bath bathroom, hallway, entryway, stairs, restroom, toilet, towel, broom, vacuum, floor, sink, water, mirror, cabinet, hairdryer, clean ...

Dressing/Closet walk-in, closet, clothes, wardrobe, shoes, shirt, pants, trousers, skirt, jacket, t-shirt, underwear, sweatshirt, coat, rack, dress, wear ...

Laundry laundry, room, basement, clothes, clothing, cloth, basket, bag, box, towel, shelf, dryer, washer, washing, machine, do, wash, hold ...

Rest/Bedroom bedroom, room, bed, pillow, blanket, mattress, bedstand, nightstand, commode, dresser, bedside, lamp, nightlight, night, light, lie ...

Work/Study home, office, den, workroom, garage, basement, laptop, computer, pc, screen, mouse, keyboard, phone, desk, chair, light, work, study ...

Sports/Exercise recreation, room, garage, basement, hallway, stairs, gym, fitness, floor, bag, towel, ball, treadmill, bike, rope, mat, run, walk, exercise ...
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Audio Feature Explorations: We used an end-to-end audio classification ConvNet, called AclNet
[10]. AclNet takes raw, amplitude-normalized 44.1 kHz audio samples as input, and produces
classification output without the need to compute spectral features. AclNet is trained using the ESC-
50 [13] corpus, a dataset of 50 classes of environmental sounds organized in 5 semantic categories
(animals, interior/domestic, exterior/urban, human, natural landscapes).

3 Dataset

We use the dialog dataset consisting of conversations between two parties about short videos (from
Charades human action dataset [15]), which was released as part of the AVSD challenge track of
DSTC7 [1]. The two parties in the conversation discuss about events in the video, where one plays
the role of a questioner and the other is the answerer [2]. For the results presented in this work, we
use the official training and validation sets to train and optimize our models, which are evaluated on
the official test set. Table 2 shows the distribution of DSTC7 AVSD data across different sets.

Table 2: Audio Visual Scene-Aware Dialog Dataset

Training Validation Test

# of Dialogs 7,659 1,787 1,710
# of Turns 153,180 35,740 13,490
# of Words 1,450,754 339,006 110,252

4 Experiments and Results

Topic Modeling Experiments: We use separate topic models trained on questions (Q), answers
(A), QA pairs, captions (C), history and history+captions to generate topics for samples from each
category. The generated topic vectors are incorporated as features for questions and dialog history.
The question topics are added to the decoder state directly. In one variation, the dialog history
topics (QA and C, or all topics) are copied to all the decoder states directly. In another variation,
the dialog history topics are added as features to the history encoder LSTM (HLSTM). We learn
topic embeddings from topics generated for the questions, QA pairs and captions as well. In addition,
GloVe embeddings [12] (200-dim) are incorporated with fine-tuning for questions and history.

Table 3: Topic Modeling Experiments

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr

Baseline 0.621 0.480 0.379 0.305 0.217 0.481 0.733
GuidedLDA (Q,QA,C) 0.614 0.475 0.374 0.299 0.215 0.474 0.695
GuidedLDA (Q,QA,C) + GloVe 0.629 0.491 0.390 0.315 0.219 0.484 0.731
StandardLDA (All topics) 0.621 0.480 0.380 0.306 0.221 0.483 0.753
GuidedLDA (All topics) 0.619 0.480 0.378 0.303 0.217 0.476 0.701
GuidedLDA (All topics) + GloVe 0.631 0.493 0.390 0.315 0.224 0.492 0.773
HLSTM with topics 0.627 0.489 0.387 0.311 0.218 0.480 0.723
Topic Embeddings 0.623 0.488 0.387 0.311 0.217 0.479 0.701
Topic Embeddings + GloVe 0.632 0.499 0.402 0.329 0.223 0.488 0.762

Table 4: Topic Model Performances on Binary/Non-binary Answers

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr

Binary
Baseline 0.626 0.479 0.371 0.294 0.214 0.474 0.676
GuidedLDA (Q,QA,C) + GloVe 0.616 0.476 0.374 0.301 0.215 0.474 0.673
GuidedLDA (All topics) + GloVe 0.629 0.486 0.381 0.306 0.223 0.488 0.728
HLSTM with topics 0.623 0.480 0.375 0.297 0.214 0.473 0.696
Topic Embeddings + GloVe 0.635 0.497 0.398 0.325 0.224 0.491 0.746

Non-binary
Baseline 0.624 0.486 0.387 0.312 0.219 0.482 0.726
GuidedLDA (Q,QA,C) + GloVe 0.633 0.497 0.396 0.320 0.220 0.487 0.759
GuidedLDA (All topics) + GloVe 0.632 0.495 0.394 0.318 0.225 0.494 0.796
HLSTM with topics 0.629 0.492 0.392 0.316 0.220 0.483 0.740
Topic Embeddings + GloVe 0.630 0.499 0.403 0.330 0.223 0.487 0.776
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Table 3 compares the baseline model [9] with the topic-based model variations. GuidedLDA (All
topics) + GloVe performs better than the baseline in all metrics. Adding topics as part of the HLSTM
also slightly improves performance compared to the baseline. Learning topic embeddings along with
the word embeddings (+GloVe fine-tuning) achieves the best performance in most of the metrics
(BLEU-scores), whereas GuidedLDA (All topics) + GloVe succeeds in other metrics. We also
evaluated topic-based models on subsets having binary and non-binary answers. As shown in Table 4,
for the non-binary subset, all topic-based models perform better than the baseline in all metrics, which
shows that these models can generate better responses for the more complex, non-binary answers.

Attention Experiments: The baseline architecture [9] only leverages the last hidden state information
from the sentence LSTM in the dialog history encoder. In our experiments, we have modified the
baseline architecture and added attention layer for the answer decoder to leverage information directly
from the dialog history LSTMs and multimodal audio/video features, with 4 different configurations
described below. To evaluate the performance of attention solely for questions that could benefit from
dialog history, we isolate the questions containing coreferences. Table 5 shows the performance of
our models on this coreference-subset. To compare the results at a more semantic level, we further
performed quantitative analysis on dialogs that contained binary answers. We evaluate our models
on their ability to predict these binary answers correctly (using precision, recall and F1-scores) as
presented in Figure 2. The results show that the configuration where decoder attends to all of the
sentence-LSTM output states performs better than the baseline.

Table 5: Decoder Attention over Dialog History and Multimodal Features on Coreference-subset

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr

Baseline 0.611 0.475 0.374 0.297 0.210 0.467 0.704
Word LSTM (all output states) 0.594 0.447 0.336 0.262 0.190 0.432 0.553
Word LSTM (last hidden states) 0.627 0.485 0.379 0.297 0.208 0.468 0.701
Sentence LSTM (all output states) 0.619 0.484 0.384 0.307 0.213 0.472 0.749
Sentence LSTM (all outputs) + AV 0.598 0.464 0.360 0.284 0.209 0.458 0.685

Figure 2: Precision, Recall, F1-scores for Attention Experiments on Coreference-Binary-subset

1. Attention on Dialog History Word LSTMs, all output states: In this configuration, we remove
the sentence level dialog history LSTM and the decoder computes the attention scores
directly between the decoder state and the word level output states for all dialog history.
We first padded the Word LSTM outputs from Dialog History LSTMs (see Word LSTM in
History in Figure 1) to the maximum sentence length of all the sentences. We summed up
all the attention scores from each of the sentence context vectors with the query decoder
state. Using this kind of attention, we had hoped that the system could remember answers
that were already given (directly or indirectly) in the earlier turns of the dialog. Directly
attending to the output states of the word LSTMs in the dialog history encoder did not
perform well compared to the baseline. This attention mechanism possibly attended to way
more information than needed.

2. Attention on Dialog History Word LSTMs, last hidden states: This configuration is similar
to the previous configuration with the difference that we only use the last hidden state
output representations of the word LSTMs corresponding to the different turns in the dialog.
Simpler than the previous setup, we stack up the hidden states from the history sentences
for attention computation. This configuration performed better that the baseline on the
coreference-subset in most of the evaluation metrics.
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3. Attention on Sentence LSTM, all output states: The baseline architecture only leverages the
last hidden state information from the sentence LSTM in the dialog history encoder. Instead,
we extract the output states from all timesteps of the LSTM corresponding to n turns of
the dialog history. This variation helps the decoder consider all the dialog turn compressed
sentence representations via the attention mechanism. This model performed better than the
baseline in all metrics on both coreference-subset (Table 5) and binary answers (Figure 2).

4. Attention on Sentence LSTM, all output states and Multimodal Audio/Video Features: This
configuration is similar to the last one with the difference that we add multimodal audio/video
features as additional state to the attention module. This mechanism allows the decoder to
selectively focus on the multimodal features along with the dialog history sentences. This
configuration did not really help improve the evaluation metrics compared to the baseline.

Audio Experiments: Table 6 shows the comparison of the baseline (B) model without audio features,
B+VGGish (provided as a part of the AVSD task), and B+AclNet features. We investigate the effects
of audio features on the overall dataset as well as on the subset of audio-related questions. We
observe that B+AclNet shows improved performances as compared to the baseline and B+VGGish,
both on the overall dataset and audio-related subset. Table 7 presents a qualitative analysis of the
addition of the VGGish and AclNet features to the baseline model. For these audio-related examples
(e.g., ’oscillating’, ’eating’, ’sneeze’), baseline and B+VGGish models generate irrelevant responses,
whereas the answers generated by B+AclNet are in accordance with the ground truth.

Table 6: Audio Feature Performances on Overall vs. Audio-related Questions

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr

Overall
Baseline (B) 0.621 0.480 0.379 0.305 0.217 0.481 0.733
B + VGGish 0.622 0.487 0.389 0.315 0.216 0.481 0.732
B + AclNet 0.625 0.491 0.391 0.316 0.218 0.484 0.736

Audio-related
Baseline (B) 0.666 0.526 0.413 0.329 0.230 0.504 0.767
B + VGGish 0.657 0.519 0.408 0.324 0.230 0.500 0.754
B + AclNet 0.659 0.527 0.424 0.348 0.236 0.507 0.796

Table 7: Audio Examples (VGGish vs. AclNet)
Question: is the fan oscillating ? is he eating something ? how many times does she sneeze ?

Ground Truth the fan is on but is still . yes he appears to be eating something she sneezes a few times in the video .

Baseline yes it is very well lit no he is not drinking anything can only see her face

Baseline + VGGish no don ’t see any music no he is not drinking anything she laughs at the end of the video

Baseline + AclNet no it is hard to tell yes he is eating sandwich she sneezes at the end of the video

5 Conclusion

In this paper, we present our explorations towards architectural extensions for contextual and mul-
timodal end-to-end audio-visual scene-aware dialog system. We incorporate context of the dialog
in the form of topics, investigate various attention mechanisms to enable the decoder to focus on
relevant parts of the dialog history and audio/video features, and incorporate audio features from
an end-to-end audio classification architecture, AclNet. We validate our approaches on the AVSD
dataset and show that some of the explored techniques yields in improved performances compared to
the baseline system for AVSD task.
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