arXiv:1910.06294v2 [cs.CL] 17 Oct 2019

Training Compact Models for Low Resource Entity
Tagging using Pre-trained Language Models

Peter Izsak, Shira Guskin, Moshe Wasserblat
Intel Al Lab
{peter.izsak, shira.guskin, moshe.wasserblat}@intel.com

Abstract

Training models on low-resource named entity recognition tasks has been shown to
be a challenge [17], especially in industrial applications where deploying updated
models is a continuous effort and crucial for business operations. In such cases
there is often an abundance of unlabeled data, while labeled data is scarce or
unavailable. Pre-trained language models trained to extract contextual features
from text were shown to improve many natural language processing (NLP) tasks,
including scarcely labeled tasks, by leveraging transfer learning. However, such
models impose a heavy memory and computational burden, making it a challenge
to train and deploy such models for inference use. In this work-in-progress we
combined the effectiveness of transfer learning provided by pre-trained masked
language models with a semi-supervised approach to train a fast and compact
model using labeled and unlabeled examples. Preliminary evaluations show that
the compact models can achieve competitive accuracy with 36x compression
rate when compared with a state-of-the-art pre-trained language model, and run
significantly faster in inference, allowing deployment of such models in production
environments or on edge devices.

1 Introduction

Named Entity Recognition (NER) is a core NLP task in which a system classifies words or phrases
using a predefined set of labels. NER is mostly used in Information Extraction use cases and is
widely deployed in industrial applications. In recent years, many deep learning approaches have
been proposed [7, 2, 5, 1, 14] which proved to be more successful in learning word, phrase and
character features and entity classification. However, in cases when there is an abundance of data
of which none or very little is annotated, the performance of such models is substantially degraded
since standard approaches fail to learn good feature representation from small amounts of labeled
examples. Annotating more data could overcome poor model performance, however, it requires
expert knowledge and monetary resources and may be bound by time-related constraints.

Recently, many NLP tasks have shown great improvements thanks to pre-trained language models.
Models such as ELMo [10], BERT [3] and GPT [11] include a large language model or contextual
embedder with hundreds of millions of parameters trained on large datasets and were shown to
produce state-of-the-art models for many NLP tasks, including low-resource scenarios where very
little annotated data is available. In particular, Transformer-base [16] models such as BERT were
shown to be highly effective in transfer-learning by fine-tuning all model parameters when training
on a target task. However, the increase in model accuracy comes at a price of increased memory and
computation requirements and with high latency when used in inference. Therefore, deploying such
models in production environments is difficult or completely impossible on edge devices.

In this preliminary work we strive to train a fast and compact model, that is, a model with competitive
accuracy in low-resource NER tasks compared with a pre-trained language model, which is also

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

small enough to fit on edge devices or be more energy efficient for production deployment. For this
purpose we employed two methods: model distillation [4] to train a compact student network using
a much larger feacher network, and pseudo-labelling [6] to produce pseudo guesses by the large
network for utilizing unlabeled data.

Recently, several works have been published regarding BERT compression. Peirsman [8], Sanh [13]
and Tsai et al. [15] showed how BERT can be distilled for training classifiers and sequence taggers
with different student models. Our approach differs in that we combine model distillation with a
semi-supervised technique for training the compact model using labeled and unlabeled data. We also
achieve higher compression ratios.

Our approach can be used to train compact models for other NLP tasks. For example, by replacing
the compact model with other compact models relevant to the downstream task or by replacing or
creating an ensemble of teacher models. We present our work-in-progress in the following sections.
We intend to release our training method as part of the NLP Architect! open source model library.

2 Approach

Our approach consists of two models: a teacher model which is a pre-trained language model, and a
compact (or student) model with significantly less parameters, a shallow topology, and which was
not pre-trained on any task prior to training on the downstream task.

To transfer knowledge from the teacher model to the compact student model during training we
devised a loss function which integrates model distillation and pseudo-labeling of unlabeled examples.
Distillation was shown by Hinton et al. [4] to be an effective method of training compact models
by using larger teacher models. Pseudo-labeling is a highly effective semi-supervised technique for
bootstrapping using unlabeled data. We use pseudo-labeling to produce a pseudo guess by the teacher
model, trusting that the pseudo label is a better guess than randomly choosing a label and by using all
available data despite not having annotated NER labels.

2.1 Models

In order to provide the compact model with the highest potential for learning from a teacher model
we opted for a pre-trained language model such as BERT to serve as the teacher model. BERT[3] is a
Transformer-based model that was pre-trained as a masked language model using a large collection of
Wikipedia pages and books. Devlin et al. [3] presented two variants of their model, named BERT-base
and BERT-large which consist of 110M and 330M parameters, respectively.

The compact, or student, model is shallow, with a simpler topology and is based on the work presented
by Ma and Hovy [7]. The compact model consists of convolution layers for extracting character
features out of words, a lookup table layer, bi-directional LSTM layers for extracting contextual
features and a Softmax or Conditional Random Fields (CRF) as the token classifier. The model
has approximately 3M parameters, meaning, it is approximately 36 and 110 times more compact
compared to BERT-base and BERT-large.

2.2 Training method

The compact model training process is depicted in Figure 1. The first step in the training process is to
fine-tune the teacher network using the available labeled data to produce a model with the highest
possible accuracy on annotated examples. The compact model is trained using both labeled and
unlabeled data in parallel. In each training batch, labeled and unlabeled examples are randomly drawn
and the appropriate loss is calculated. We modified the compact model loss to include three losses:
the loss of the downstream task (NER) using the labeled examples, the distillation loss, and the
pseudo-labeling loss. We adapted model distillation from [4] and produced the following distillation
loss:

Lgistittation = KL(logitscompact/T| |logit5teacher/T)

"https://github.com/NervanaSystems/nlp-architect

https://github.com/NervanaSystems/nlp-architect

Unlabeled

examples
@ Teacher Mode! MDDDD

soft targets B

Distillation Loss

KL Divergence

Labeled
examples

N :
| pseudo-labels
» Compact Model ——————>

’ annotated labels

Figure 1: Compact (student) model training process. Teacher and compact models consume examples
and produce logits for each example. Distillation loss is calculated by KL-Divergence using both
models’ logits. The compact task loss is calculated by producing a pseudo-label by the teacher model
or by the annotated label that is available in the training set.

where Lg;stiniation 18 calculated by using KL-Divergence on the probability distributions of both
compact and teacher models. T' is the temperature parameter that softens or hardens the logits
distribution per class of both models.

We modified the loss of the compact model to include the pseudo-labeling prediction loss. The
pseudo-guess is produced by applying arg max to the logits of the teacher model, and results in the
following loss:

I _ [CrossEntropyLoss(y,y) labeled example
fask = CrossEntropyLoss(y, ;) unlabeled example

where ¢ is the entity label class predicted by the compact model and g; is the label predicted by the
teacher model.

The final compact model loss is defined by the weighted sum of Ly, sx and Lg;stitiation-

3 Experiments

3.1 Dataset

In our evaluations we used the English data from the CoNLL 2003 share task [12]. The dataset consists
of 14987/3466/3684 samples separated into training, development and test sets, respectively. We
simulate the low-resource scenario by randomly sampling training sets containing 150, 300, 750, 1500
and 3000 examples from the training set, which represent approximately 1%, 2%, 5%, 10% and
20% of available training examples. The remaining training examples are used as unlabeled training
examples. We used the development set to choose the best compact model and report results using
the test set.

3.2 Setup

Our experimental setup includes BERT-base and BERT-large models [3] as the teacher models with a
token classification head that consists of a fully connected layer and Softmax. We used the pre-trained
BERT models provided by the PyTorch-Transformers library?. We fine-tuned the teacher models
using only the generated labeled training set using default hyperparameters as mentioned in Devlin
et al. [3] for 5 epochs. The compact model was implemented in a fashion similar to the model
described in [7] and with a similar configuration. We pre-loaded the embedding layer of the compact
models with 100 dimension GloVe [9] pre-trained word embeddings. The compact models were
trained for 20 epochs using batch size 32, with an Adam optimizer with a fixed learning rate of
0.001 and a dropout rate of 0.5. 20 training sets were randomly generated for each training set size,
resulting in 100 training sets in all. We report the averaged F1 per training set size using the test set.

Zhttps://github.com/huggingface/transformers

https://github.com/huggingface/transformers

0.70 7 —e— BERT-base 0.704 v —e— BERT-large

7/ —¥- Compact+Softmax 7 —¥- Compact+Softmax
57 Compact+CRF Vid Compact+CRF
0654 7 —<- DistCompact+Softmax 065 7 —<- DistCompact+Softmax
4 —- DistCompact+CRF ('3 —- DistCompact+CRF
150 300 750 1500 3000 1_;:0 3&0 7é0 l5b0 30‘00
No. labeled training samples No. labeled training samples
(a) BERT-base as teacher model (b) BERT-large as teacher model

Figure 2: Model performance (F1) per number of available labeled training samples. Com-
pact+classifier denote compact models using only labeled examples, DistCompact+classifier denote
compact models using distillation and pseudo-labeling training. The compact model classifier is
denoted by the suffix (Softmax or CRF). BERT-base was used as the teacher model for training the
compact model in (a), was used as the teacher model for training the compact model in (b).

Table 1: Speedup of compact models compared with BERT-base and BERT-large teacher models.
Several batch sizes were measured. Speedup is reported per classifier used in the compact model.

Batch size BERT-base BERT-large
CRF Softmax CRF Softmax
1 3.3x 4.3% 8.1x 10.6 x
32 28.6x 33.7x 85.2x 100.4 x
64 40.0x 452x 109.5x 123.8 %
128 49.9x 55.6x 123.6x 137.8x

3.3 Compact model accuracy

To evaluate the effectiveness of our approach we compared our models with baseline compact models
trained using only the available labeled examples and fine-tuned BERT-base and BERT-large models.
Figure 2 includes the performance of all models.

As can be seen in Figure 2 the teacher models outperform the baseline compact models in all
training set sizes. Figure 2 also shows that the compact models trained using our method consistently
outperform the baseline compact models, proving the effectiveness of our approach. Interestingly,
compact models trained by our method using less than 300 labeled samples outperform BERT-base
and exhibit competitive performance throughout all training set sizes compared with both teacher
models. We also learn that as more labeled training data is available, all models start to converge to
a similar accuracy with the exception of BERT-large. We also learn that the classifier used by the
distilled compact models has almost no effect on the results, as opposed to its effect on the baseline
compact models.

3.4 Compact model inference speed

We evaluated the inference speed of the compact models and compared it with both large teacher
models on a CPU back-end setup®. We concatenated all available data and measured total time for
completion of 1 pass over all examples. Table 1 lists our results. As expected, the resulting compact
networks show speed-ups of 3.3 to 10.6 for running inference in batch size 1 which is relevant for
doing online inference. Batched inference, which is used for information extraction tasks, shows
more significant speedups of up to 137.8 when compared with BERT-large. As expected, the simpler
Softmax classifiers outperform CRF.

3Dual Intel® Xeon®) Processor E5-2699A v4 @ 2.40GHz; 251GB RAM; OS: Ubuntu 16.04.1 (4.15.0-50-
generic); Tensorflow 1.12 and PyTorch 1.0

4 Discussion

Scarcely labeled NLP tasks are hard to tackle, yet are widely common in the industry. Pre-trained
language models have been shown to produce state-of-the-art models on such tasks NER, however,
the computational and memory requirements make such models difficult to deploy in production. In
our initial evaluations we have shown that, for a simulated low-resource NER task, by combining
a semi-supervised compression technique such as pseudo-labeling with model distillation we are
able to train compact models that can achieve competitive accuracy and superior inference speed
compared with larger pre-trained language models. Because our training method is designed to
be task independent we intend to evaluate our method on additional NLP tasks, and explore the
compression limitations of our approach using other model topologies. More specifically, we plan to
explore energy efficient models with the intention of reducing computation (FLOPS) and memory
footprint for easy edge-device deployment of multi-model NLP tasks.

References

[1] J.P.C. Chiu and E. Nichols. Named entity recognition with bidirectional Istm-cnns. Transactions
of the Association for Computational Linguistics, 4:357-370, 2015.

[2] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P. Kuksa. Natural
language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493-2537, 2011.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. ArXiv, abs/1810.04805, 2018.

[4] G.E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531, 2015.

[5] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural architectures
for named entity recognition. In HLT-NAACL, 2016.

[6] D.-H. Lee. Pseudo-label : The simple and efficient semi-supervised learning method for deep
neural networks. 2013.

[7] X. Ma and E. H. Hovy. End-to-end sequence labeling via bi-directional Istm-cnns-crf. ArXiv,
abs/1603.01354, 2016.

[8] Y. Peirsman. Distilling bert models with spacy. 2019. URL http://www.nlp.town/blog/
distilling-bert/.

[9] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In EMNLP, 2014.

[10] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. S. Zettlemoyer.
Deep contextualized word representations. ArXiv, abs/1802.05365, 2018.

[11] A. Radford. Improving language understanding by generative pre-training. 2018.

[12] E. F. T. K. Sang and F. D. Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. ArXiv, cs.CL/0306050, 2003.

[13] V. Sanh. Smaller, faster, cheaper, lighter: Introducing distilbert, a distilled version of bert. 2019.
URL https://medium.com/huggingface/distilbert-8cf3380435b5.

[14] E. Strubell, P. Verga, D. Belanger, and A. McCallum. Fast and accurate entity recognition with
iterated dilated convolutions. In EMNLP, 2017.

[15] H. Tsai, J. Riesa, M. Johnson, N. Arivazhagan, X. Li, and A. Archer. Small and practical bert
models for sequence labeling. 2019.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In NIPS, 2017.

[17] B. Zhang, X. Pan, T. Wang, A. Vaswani, H. Ji, K. Knight, and D. Marcu. Name tagging for
low-resource incident languages based on expectation-driven learning. In HLT-NAACL, 2016.

http://www.nlp.town/blog/distilling-bert/
http://www.nlp.town/blog/distilling-bert/
https://medium.com/huggingface/distilbert-8cf3380435b5

	1 Introduction
	2 Approach
	2.1 Models
	2.2 Training method

	3 Experiments
	3.1 Dataset
	3.2 Setup
	3.3 Compact model accuracy
	3.4 Compact model inference speed

	4 Discussion

