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Abstract

Many cooperative multiagent reinforcement learning environments provide agents
with a sparse team-based reward as well as a dense agent-specific reward that
incentivizes learning basic skills. Training policies solely on the team-based reward
is often difficult due to its sparsity. Also, relying solely on the agent-specific
reward is sub-optimal because it usually does not capture the team coordination
objective. A common approach is to use reward shaping to construct a proxy
reward. However, this requires manual design and tuning for each environment.
We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-
level training platform that handles the two objectives separately through two
optimization processes. An evolutionary algorithm maximizes the sparse team-
based objective through neuroevolution. Concurrently, a gradient-based optimizer
trains policies to maximize dense agent-specific rewards. These gradient-based
policies are periodically copied into the evolutionary population. This enables the
evolutionary algorithm to use skills learned via the agent-specific rewards toward
optimizing the global objective. Results demonstrate that MERL significantly
outperforms state-of-the-art methods such as MADDPG on a number of difficult
coordination benchmarks.

1 Introduction

Cooperative multiagent reinforcement learning (MARL) studies how multiple agents can learn to
coordinate as a team toward maximizing a global objective. Cooperative MARL has been applied
to many real world applications such as air traffic control [Tumer and Agogino, 2007], multi-robot
coordination [Sheng et al., 2006, Yliniemi et al., 2014], communication and language [Lazaridou
et al., 2016, Mordatch and Abbeel, 2018], and autonomous driving [Shalev-Shwartz et al., 2016].

Many such environments endow agents with a team reward that reflects the team’s coordination
objective as well as an agent-specific local reward that rewards basic skills. For instance, in soccer,
dense local rewards could capture agent-specific skills such as passing, dribbling and running. The
agents must then coordinate when and where to use these skills in order to optimize the team objective,
which is winning the game. Usually, the agent-specific reward is dense and easy to learn from, while
the team reward is sparse and requires the cooperation of all or most agents.

Having each agent directly optimize the team reward and ignore the agent-specific reward usually
fails or is sample-inefficient for complex tasks due to the sparsity of this reward function. Conversely,
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having each agent directly optimize the agent-specific reward also fails because it doesn’t capture the
team’s objective, even with state of the art multiagent RL algorithms such as MADDPG.

One solution to this problem is to use reward shaping, where extensive domain knowledge about the
task is used to create a proxy reward function [Rahmattalabi et al., 2016]. Constructing this proxy
reward function is difficult in complex environments, and is domain-dependent. Apart from requiring
domain knowledge and manual tuning, this approach also poses risks of changing the underlying
problem itself [Ng et al., 1999]. Simple approaches to creating a proxy reward via linear combinations
of the two objectives also fail to solve or generalize to complex coordination tasks [Devlin et al.,
2011, Williamson et al., 2009].

In this paper, we introduce Multiagent Evolutionary Reinforcement Learning (MERL), a state-of-
the-art algorithm for cooperative MARL that doesn’t require reward shaping. MERL is a split-level
training platform that combines gradient-based and gradient-free optimization. The gradient-free
optimizer is an evolutionary algorithm that maximizes the team objective through neuroevolution.
The gradient-based optimizer is a policy gradient algorithm that maximizes each agent’s dense, local
rewards. These gradient-based policies are periodically copied into the evolutionary population. The
two processes operate concurrently and share information through a shared replay buffer.

A key strength of MERL is that it is a general method which does not require domain-specific reward
shaping. This is because MERL optimizes the team objective directly while leveraging agent-specific
rewards to learn basic skills. We test MERL in a number of multiagent coordination benchmarks.
Results demonstrate that MERL significantly outperforms state-of-the-art methods such as MADDPG
while using the same observations and reward functions. We also demonstrate that MERL scales
gracefully to increasing complexity of coordination objectives where MADDPG and its variants fail
to learn entirely.

2 Background and Related Work

Markov Games: A standard reinforcement learning (RL) setting is often formalized as a Markov
Decision Process (MDP) and consists of an agent interacting with an environment over a finite
number of discrete time steps. This formulation can be extended to multiagent systems in the form of
partially observable Markov games [Littman, 1994, Lowe et al., 2017]. An N -agent Markov game
is defined by S, a global state of the world, and a set of N observations {Oi} and N actions {Ai}
corresponding to theN agents. At each time step t, each agent observes its corresponding observation
Oti and maps it to an action Ati using its policy πi.

Each agent receives a scalar reward rti based on the global state St and joint action of the team. The
world then transitions to the next state St+1 which produces a new set of observations {Oi}. The
process continues until a terminal state is reached. Ri =

∑T
t=0 γ

trti is the total return for agent i
with discount factor γ ∈ (0, 1]. Each agent aims to maximize its expected return.

TD3: Policy gradient (PG) methods frame the goal of maximizing the expected return as the
minimization of a loss function. A widely used PG method for continuous, high-dimensional action
spaces is DDPG [Lillicrap et al., 2015]. Recently, [Fujimoto et al., 2018] extended DDPG to Twin
Delayed DDPG (TD3), addressing its well-known overestimation problem. TD3 is the state-of-the-art,
off-policy algorithm for model-free DRL in continuous action spaces.

TD3 uses an actor-critic architecture [Sutton and Barto, 1998] maintaining a deterministic policy
(actor) π : S → A, and two distinct criticsQ : S ×A → Ri. Each critic independently approximates
the actor’s action-value function Qπ. A separate copy of the actor and critics are kept as target
networks for stability and are updated periodically. A noisy version of the actor is used to explore the
environment during training. The actor is trained using a noisy version of the sampled policy gradient
computed by backpropagation through the combined actor-critic networks. This mitigates overfitting
of the deterministic policy by smoothing the policy gradient updates.

Evolutionary Reinforcement Learning (ERL) is a hybrid algorithm that combines Evolutionary
Algorithms (EAs) [Floreano et al., 2008, Lüders et al., 2017, Fogel, 2006, Spears et al., 1993], with
policy gradient methods [Khadka and Tumer, 2018]. Instead of discarding the data generated during
a standard EA rollout, ERL stores this data in a central replay buffer shared with the policy gradient’s
own rollouts - thereby increasing the diversity of the data available for the policy gradient learners.
Since the EA directly optimizes for episode-wide return, it biases exploration towards states with
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higher long-term returns. The policy gradient algorithm which learns using this state distribution
inherits this implicit bias towards long-term optimization. Concurrently, the actor trained by the
policy gradient algorithm is inserted into the evolutionary population allowing the EA to benefit from
the fast gradient-based learning.

Related Work: Lowe et al. [2017] introduced MADDPG which tackled the inherent non-stationarity
of a multiagent learning environment by leveraging a critic which had full access to the joint state
and action during training. Foerster et al. [2018b] utilized a similar setup with a centralized critic
across agents to tackle StarCraft micromanagement tasks. An algorithm that could explicitly model
other agents’ learning was investigated in Foerster et al. [2018a]. However, all these approaches rely
on a dense agent reward that properly captures the team objective. Methods to solve for these types
of agent-specific reward functions were investigated in Li et al. [2012] but were limited to tasks with
strong simulators where tree-based planning could be used.

A closely related work to MERL is [Liu et al., 2019] where Population-Based Training (PBT) [Jader-
berg et al., 2017] is used to optimize the relative importance between a collection of dense, shaped
rewards automatically during training. This can be interpreted as a singular central reward function
constructed by scalarizing a collection of reward signals where the scalarization coefficients are
adaptively learned during training. In contrast, MERL optimizes its reward functions independently
with information transfer across them facilitated through shared replay buffers and policy migra-
tion directly. This form of information transfer through a shared replay buffer has been explored
extensively in recent literature [Colas et al., 2018, Khadka et al., 2019].

3 Multiagent Evolutionary Reinforcement Learning

MERL leverages both agent-specific and team objectives through a hybrid algorithm that combines
gradient-free and gradient-based optimization. The gradient-free optimizer is an evolutionary algo-
rithm that maximizes the team objective through neuroevolution. The gradient-based optimizer trains
policies to maximize agent-specific rewards. These gradient-based policies are periodically copied
into the evolutionary population. This enables the evolutionary algorithm to use agent-specific skills
learned by training on the agent-specific rewards toward optimizing the team objective.

Figure 1: Team represented as
multi-headed policy net π

Policy Topology: We represent our multiagent (team) policies using
a multi-headed neural network π as illustrated in Figure 1. The
head πk represents the k-th agent in the team. Given an incoming
observation for agent k, only the output of πk is considered as agent
k’s response. In essence, all agents act independently based on
their own observations while sharing weights (and by extension,
the features) in the lower layers (trunk). This is commonly used
to improve learning speed [Silver et al., 2017]. Further, each agent
k also has its own replay buffer (Rk) which stores its experience
defined by the tuple (state, action, next state, local reward) for each
interaction with the environment (rollout) involving that agent.

Team Reward Optimization: Figure 2 illustrates the MERL algo-
rithm. A population of multi-headed teams, each with the same topology, is initialized with random
weights. The replay bufferRk is shared by the k-th agent across all teams. The population is then
evaluated for each rollout. The team reward for each team is disbursed at the end of the episode and
is considered as its fitness score. A selection operator selects a portion of the population for survival
with probability proportionate to their fitness scores. The weights of the teams in the population are
probabilistically perturbed through mutation and crossover operators to create the next generation of
teams. A portion of the teams with the highest relative fitness are preserved as elites. At any given
time, the team with the highest fitness, or the champion, represents the best solution for the task.

Policy Gradient: The procedure described so far resembles a standard EA except that each agent
k stores each of its experiences in its associated replay buffer (Rk) instead of just discarding it.
However, unlike EA, which only learns based on the low-fidelity global reward, MERL also learns
from the experiences within episodes of a rollout using policy gradients. To enable this kind of "local
learning", MERL initializes one multi-headed policy network πpg and one critic Q. A noisy version

3



Algorithm 1 Multiagent Evolutionary Reinforcement Learning

1: Initialize a population of k multi-head teams popπ , each with weights θπ initialized randomly
2: Initialize a shared critic Q with weights θQ
3: Initialize an ensemble of N empty cyclic replay buffersRk, one for each agent
4: Define a white Gaussian noise generatorWg random number generator r() ∈ [0, 1)
5: for generation = 1,∞ do
6: for team π ∈ popπ do
7: g,R = Rollout (π,R, noise=None, ξ)
8: _,R = Rollout (π,R, noise=Wg , ξ = 1)
9: Assign g as π’s fitness

10: end for
11: Rank the population popπ based on fitness scores
12: Select the first e teams π ∈ popπ as elites
13: Select the remaining (k − e) teams π from popπ , to form Set S using tournament selection
14: while |S| < (k − e) do
15: Single-point crossover between a randomly sampled π ∈ e and π ∈ S and append to S
16: end while
17: for Agent k=1,N do
18: Randomly sample a minibatch of T transitions (si, ai, li, si+1) from Rk

19: Compute yi = li + γ min
j=1,2

Q′j(si+1, a
∼|θQ

′
j )

20: where a∼ = π′pg(k, si+1|θπ
′
pg ) [action sampled from the kth head of π′pg] +ε

21: Update Q by minimizing the loss: L = 1
T

∑
i(yi −Q(si, ai|θQ)2

22: Update πkpg using the sampled policy gradient

∇θπpgJ ∼
1
T

∑
∇aQ(s, a|θQ)|s=si,a=ai∇θπpgπ

k
pg(s|θπpg)|s=si

23: Soft update target networks: θπ
′ ⇐ τθπ + (1− τ)θπ′

and θQ
′ ⇐ τθQ + (1− τ)θQ′

24: Migrate the policy gradient team popj : for weakest π ∈ popjπ : θπ ⇐ θπpg

25: end for
26: end for

of πpg is then used to conduct its own set of rollouts in the environment, storing each agent k’s
experiences in its corresponding buffer (Rk) similar to the evolutionary rollouts.

Figure 2: High level schematic of MERL highlighting
the integration of local and global reward functions

Agent-Specific Reward Optimization:
Crucially, each agent’s replay buffer is kept
separate from that of every other agent to
ensure diversity amongst the agents. The
shared critic samples a random mini-batch
uniformly from each replay buffer and uses
it to update its parameters using gradient
descent. Each agent πkpg then draws a mini-
batch of experiences from its correspond-
ing buffer (Rk) and uses it to sample a pol-
icy gradient from the shared critic. Unlike
the teams in the evolutionary population
which directly seek to optimize the team
reward, πpg seeks to maximize the agent-
specific local reward while exploiting the
experiences collected via evolution.

Skill Migration: Periodically, the πpg net-
work is copied into the evolving population of teams and can propagate its features by participating
in evolution. This is the core mechanism that combines policies learned via agent-specific and
team rewards. Regardless of whether the two rewards are aligned, evolution ensures that only the
performant derivatives of the migrated network are retained. This mechanism guarantees protection
against destructive interference commonly seen when a direct scalarization between two reward
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functions is attempted. Further, the level of information exchange is automatically adjusted during
the process of learning, in contrast to being manually tuned by an expert designer.

Algorithm 1 provides a detailed pseudo-code of the MERL algorithm. The choice of hyperparameters
is explained in the Appendix. Additionally, our source code 2 is available online.

4 Experiments

(a) Cooperative Navigation (b) Rover (c) Predator-Prey

Figure 3: Illustrations of experimental setup used to perform comparative studies.
We adopt environments from [Lowe et al., 2017] and [Rahmattalabi et al., 2016] to perform our
experiments. Each environment consists of multiple agents and landmarks in a two-dimensional
world. Agents take continuous control actions to move about the world. Figure 3 illustrates the three
environments which are described in more detail below.

Cooperative Navigation: In this environment,N agents must cooperate to reach a set ofN Points Of
Interest (POIs). The agents are rewarded if they cover all of the POIs and are penalized if they collide
with each other. The agent-specific rewards are the same for each agent and are computed as follows
(same as [Lowe et al., 2017]). For each POI, the minimum distance to any agent is calculated. These
minimum distances are then summed over all POIs, and the agent-specific reward is the negative of
this amount. The team reward is then computed as the running average of this agent-specific reward
across an episode. The team reward captures the team goal of covering the POIs as soon as possible
within an episode. Agents observe the relative positions of the other agents and the POIs.

Rover Domain: The rover domain [Rahmattalabi et al., 2016] is similar to the cooperative navigation
environment except that multiple agents need to simultaneously go to the same POI in order to
observe it. The number of agents required to observe a POI is termed the coupling requirement. If
a team with agents less that this number go to the POI, no reward is observed. This sparsity is the
characteristic difficulty of the task. The team’s reward is the percentage of POIs observed at the end
of an episode. Each agent can also locally compute its distance to its closest POI and use it as its
agent-specific reward. It’s observation space consists of two channels dedicated to detecting POIs
and rovers, respectively. Each channel receives intensity information over 10◦ resolution spanning
the 360◦ around the agent’s position loosely based on the characteristic of a Pioneer robot [Thrun
et al., 2000]. This is similar to a LIDAR. Since within each 10◦ bracket, it returns the closest reflector,
occlusions make the problem partially-observable in contrast to the other environments.

Predator-Prey: In this environment, N slower cooperating agents (predators) must chase the faster
adversary (prey) around an environment with L large landmarks in randomly-generated locations. The
predators get a reward when they catch (touch) the prey while the prey is penalized. The team reward
for the predators is the cumulative number of prey-touches in an episode. Each predator can also
compute the average distance to the prey and use it as its agent-specific reward. All agents observe the
relative positions and velocities of the other agents as well as the positions of the landmarks. The prey
can accelerate 33% faster than the predator and has a higher top speed. We tests two versions termed
simple and hard predator-prey where the prey is 30% and 100% faster, respectively. Additionally, the
prey itself learns dynamically during training. We use DDPG [Lillicrap et al., 2015] as a learning

2https://tinyurl.com/y6erclts
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algorithm for training the prey policies. All of our candidate algorithms are tested on their ability to
train the team of predators in catching this prey. This setup is identical to Lowe et al. [2017].

Compared Baselines: We compare the performance of MERL with a standard neuroevolutionary
algorithm (EA) [Fogel, 2006], MADDPG [Lowe et al., 2017] and MATD3, a variant of MADDPG
that integrates the improvements described within TD3 [Fujimoto et al., 2018] over DDPG. Internally,
MERL uses EA and TD3 as its team-reward and agent-specific reward optimizer, respectively.
MADDPG on the other hand was chosen as it is the state-of-the-art multiagent RL algorithm. We
implemented MATD3 ourselves to ensure that the differences between MADDPG and MERL do not
originate from having the more stable TD3 over DDPG.

Methodology for Reported Metrics: For MATD3 and MADDPG, the team network was periodi-
cally tested on 10 task instances without any exploratory noise. The average score was logged as
its performance. For MERL and EA, the team with the highest fitness was chosen as the champion
for each generation. The champion was then tested on 10 task instances, and the average score was
logged. This protocol shielded the reported metrics from any bias of the population size. We conduct
5 statistically independent runs with random seeds from {2019, 2023} and report the average with
error bars showing a 95% confidence interval. All scores reported are compared against the number
of environment steps (frames). A step is defined as the multiagent team taking a joint action and
receiving a feedback from the environment. To make the comparisons fair across single-team and
population-based algorithms, all steps taken by all teams in the population are counted cumulatively.

5 Results

Figure 4: Performance on the coop-
erative navigation benchmark where
#agents = #POIs = 3.

Cooperative Navigation: Figure 4 shows the compara-
tive performance in the cooperative navigation environ-
ment. MERL significantly outperforms all baselines in
terms of sample-efficiency and final achieved performance.
EA seems to be capable of catching up to MERL. How-
ever, it is significantly slower requiring approximately
an order of magnitude more samples to reach the same
performance. This is an expected behavior for neuroevolu-
tionary methods which are known to be sample-inefficient.
In contrast, MERL, by virtue of its fast policy-gradient
components, learns significantly faster. Similarly, in con-
trast to MADDPG and MATD3, MERL’s evolutionary
component which explicitly optimizes the team objective
enables it to achieve significantly higher performance.

Rover Domain: Figure 5 shows the comparative perfor-
mance of MERL, MADDPG, MATD3, and EA tested in the rover domain with coupling requirements
from 1 to 7. In order to benchmark against the proxy reward functions that use scalarized linear
combinations we test MADDPG and MATD3 with two variations of reward functions. Global
represents the scenario where only the sparse team reward is used. Mixed represents the scenario
where a linear combination of the team-reward and agent-specific reward is used. Each reward is
scaled to be between 0 and 1 before being combined. A weighing coefficient of 10 is used to amplify
the team-reward’s influence in order to counter its sparsity. The weighing coefficient was tuned using
a grid search (more details in Figure 6).

MERL significantly outperforms all baselines across all coupling requirements. The tested baselines
clearly degrade quickly beyond a coupling of 2. The increasing coupling requirement is equivalent to
increasing difficulty in joint-space exploration and entanglement in the team objective. However, it
does not increase the size of the state-space, complexity of perception, or navigation. This indicates
that the degradation in performance is strictly due to the increase in complexity of the team objective.

Notably, MERL is able to learn on coupling greater than n = 6 where methods without explicit
reward shaping have been shown to fail entirely [Rahmattalabi et al., 2016]. MERL successfully
completes the task using the same set of information and coarse, unshaped reward functions as the
other algorithms. The primary mechanism that enables this is MERL’s bi-level approach whereby it
leverages the agent-specific reward function to solve navigation and perception while concurrently
using the team-reward function to learn team formation and effective coordination.
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Figure 6: MATD3’s performance for
different scalarization coefficients in
combining the agent-specific and team-
reward.

Scalarization coefficients for mixed rewards: Figure 6
shows the performance of MATD3 in optimizing mixed
rewards computed with different coefficients used to am-
plify team-reward relative to the agent-reward. The results
demonstrate that finding a good balance between these
two rewards through linear scalarization is difficult as all
values tested fail to make any progress in the task. This is
because a static scalarization cannot capture the dynamic
properties of ‘which reward is important when’ and in-
stead leads to an ineffective proxy. In contrast, MERL
addresses this problem through its dual-pronged approach
that is able to leverage both reward functions without the
need to explicitly combine them.

Team behaviors: Figure 7 illustrates the trajectories gen-
erated for the rover domain with a coupling of n = 3.
The trajectories for partially and fully trained MERL are
shown in Figure 7 (a) and (b), respectively. During training, when MERL has not discovered success
in the team objective (no POIs are successfully observed), MERL simply proceeds to optimize the
agent-specific objective for each agent. This allows it to reach trajectories such as the ones shown in
7(a) where each agent learns to go towards a POI.

Given this joint behavior, the probability 3 agents congregating to the same POI is higher compared
to random undirected exploration by each agent. Once this scenario is stumbled upon, the team
reward optimizer (EA) within MERL will explicitly select for agent policies that lead to such team-
forming joint behaviors. Eventually it succeeds as shown in Figure 7(b). Here, team formation and
collaborative pursuit of the POIs is immediately apparent. Two teams of 3 agents each form at the
start of the episode. Further, the two teams also coordinate among each other to pursue different POIs
in order to maximize the team reward. While the POI allocation is not perfect, (the one in the bottom
is left unattended) they do succeed in successfully observing 3 out of the 4 POIs.

In contrast, MATD3-mixed fails to successfully observe any POI. From the trajectories, it is apparent
that the agents have successfully learned to perceive and navigate to reach POIs. However, they are
unable to use this skill towards fulfilling the team objective. Instead each robot is rather split on the
objective that it is optimizing. Some robots seem to be in sole pursuit of POIs without any regard for
team formation or collaboration while others seem to exhibit random movements.

(a) Coupling 1 (b) Coupling 2 (c) Coupling 3 (d) Coupling 4

(e) Coupling 5 (f) Coupling 6 (g) Coupling 7 (h) Legend

Figure 5: Performance on the Rover Domain with coupling varied from 1 to 7. MERL significantly
outperforms other baselines while being robust to increasing complexity of the team objective.
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(a) MERL: training (b) MERL: trained (c) MATD3: trained

Figure 7: Agent trajectories for coupling = 3. Red/black squares are observed/unobserved POIs

Figure 8: Performance on the predator-prey benchmark where the prey
is 30% faster (left) and 100% faster (right), respectively.

The primary reason for this
is the mixed reward func-
tion that directly combines
the agent-specific and team
reward functions. Since the
two reward functions have
no guarantees of alignment
across the state-space of the
task, they invariably lead to
learning these sub-optimal
joint-behaviors that solve a
certain form of scalarized
mixed objective. In con-
trast, MERL by virtue of its bi-level optimization framework is able to leverage both reward functions
without the need to explicitly combine them. This enables MERL to avoid these sub-optimal policies
and solve the task without any reward shaping or manual tuning.

Figure 9: Subsequent classification of policies that
migrate from the policy gradient learners to the
evolutionary population

Predator-Prey: Figure 8 show the comparative
performance in controlling the team of preda-
tors in the predator-prey environment. Note that
unlike the other cooperative environments, this
is an adversarial environment that dynamically
adapts against the agents. The prey (considered
as part of the environment in this analysis) uses
DDPG to learn constantly against our team of
predators. This is why predator performance
(measured as number of prey touches) exhibits
ebb and flow during learning. MERL outper-
forms MATD3, EA, and MADDPG across both
simple and hard variations of the task. EA does
manage to catch up with MERL on the simple
variation of the task, but is significantly slower
to learn.

Selection Rate: We ran experiments tracking
whether the policies migrated from the policy
gradient learners to the evolutionary population were selected or discarded during the subsequent
selection process (Figure 9). Note that the expected selection rate if chosen at random is 0.1 as 1
policy is migrated into a population of 10. In contrast, the selection rate for migrated policies is
significantly higher across all benchmarks. This highlights the importance of MERL’s integrative
approach in combining the two optimization processes towards optimizing the team objective.
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6 Conclusion

In this paper, we introduced MERL, a hybrid algorithm that leverages both agent-specific and team
objectives by combining gradient-based and gradient-free optimization. MERL achieves this by using
a fast policy-gradient optimizer to exploit dense agent-specific rewards while concurrently leveraging
neuroevolution to tackle the team-objective.

Results demonstrate that MERL significantly outperforms MADDPG, the state-of-the-art multiagent
RL method, in a wide array of benchmarks. We also tested a modification of MADDPG to integrate
TD3 - the state-of-the-art single-agent RL algorithm. These experiments demonstrated that the
core improvements of MERL originate from its ability to leverage both team and agent-specific
reward functions without the need to explicitly combine them. This differentiates MERL from other
approaches like reward scalarization and reward shaping that either require extensive manual tuning
or can detrimentally change the MDP [Ng et al., 1999] itself.

Future work will explore MERL for adversarial settings such as Pommerman [Resnick et al., 2018],
StarCraft [Justesen and Risi, 2017, Vinyals et al., 2017] and RoboCup [Kitano et al., 1995, Liu et al.,
2019]. Further, MERL can be considered a bi-level approach to combine agent-specific and team
reward. Extending MERL to general multi-reward settings such as is the case for multitask learning,
is another promising area for future work.
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A Hyperparameters Description

Table 1: Hyperparameters used for Predator-Prey and Cooperative Navigation
Hyperparameter MERL MATD3/MADDPG
Population size k 10 N/A

Rollout size 10 10
Target weight τ 0.01 0.01

Actor Learning Rate 0.01 0.01
Critic Learning Rate 0.01 0.01

Discount Learning Rate γ 0.95 0.95
Replay Buffer Size 1e6 1e6

Batch Size 1024 1024
Mutation Probability mutprob 0.9 N/A

Mutation Fraction mutfrac 0.1 N/A
Mutation Strength mutstrength 0.1 N/A

Super Mutation Probability supermutprob 0.05 N/A
Reset Mutation Probability resetmutprob 0.05 N/A

Number of elites e 4 N/A
Exploration Policy N (0, σ) N (0, σ)

Exploration Noise σ 0.4 0.4
Rollouts per fitness ξ 10 N/A

Actor Neural Architecture [100, 100] [100, 100]
Critic Neural Architecture [100, 100] [300, 300]
TD3 Policy Noise variance 0.2 0.2

TD3 Policy Noise Clip 0.5 0.5
TD3 Policy Update Frequency 2 2

Table 1 details the hyperparameters used for MERL, MATD3, and MADDPG in tackling predator-
prey and cooperative navigation. The hyperparmaeters were inherited from Lowe et al. [2017] to
match the original experiments for MADDPG and MATD3. The only exception to this was the use of
hyperbolic tangent instead of Relu activation functions.

Table 2: Hyperparameters used for Rover Domain
Hyperparameter MERL MATD3/MADDPG
Population size k 10 N/A

Rollout size 50 50
Target weight τ 1e−5 1e−5

Actor Learning Rate 5e−5 5e−5

Critic Learning Rate 1e−5 1e−5

Discount Learning Rate γ 0.5 0.97
Replay Buffer Size 1e5 1e5

Batch Size 512 512
Mutation Probability mutprob 0.9 N/A

Mutation Fraction mutfrac 0.1 N/A
Mutation Strength mutstrength 0.1 N/A

Super Mutation Probability supermutprob 0.05 N/A
Reset Mutation Probability resetmutprob 0.05 N/A

Number of elites e 4 N/A
Exploration Policy N (0, σ) N (0, σ)

Exploration Noise σ 0.4 0.4
Rollouts per fitness ξ 10 N/A

Actor Neural Architecture [100, 100] [100, 100]
Critic Neural Architecture [100, 100] [300, 300]
TD3 Policy Noise variance 0.2 0.2

TD3 Policy Noise Clip 0.5 0.5
TD3 Policy Update Frequency 2 2
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Table 2 details the hyperparameters used for MERL, MATD3, and MADDPG in the rover domain.
The hyperparameters themselves are defined below:

• Optimizer = Adam
Adam optimizer was used to update both the actor and critic networks for all learners.

• Population size k
This parameter controls the number of different actors (policies) that are present in the
evolutionary population.

• Rollout size
This parameter controls the number of rollout workers (each running an episode of the task)
per generation.
Note: The two parameters above (population size k and rollout size) collectively modulates
the proportion of exploration carried out through noise in the actor’s parameter space and
its action space.

• Target weight τ
This parameter controls the magnitude of the soft update between the actors and critic
networks, and their target counterparts.

• Actor Learning Rate
This parameter controls the learning rate of the actor network.

• Critic Learning Rate
This parameter controls the learning rate of the critic network.

• Discount Rate
This parameter controls the discount rate used to compute the return optimized by policy
gradient.

• Replay Buffer Size
This parameter controls the size of the replay buffer. After the buffer is filled, the oldest
experiences are deleted in order to make room for new ones.

• Batch Size
This parameters controls the batch size used to compute the gradients.

• Actor Activation Function
Hyperbolic tangent was used as the activation function.

• Critic Activation Function
Hyperbolic tangent was used as the activation function.

• Number of Elites
This parameter controls the fraction of the population that are categorized as elites. Since
an elite individual (actor) is shielded from the mutation step and preserved as it is, the elite
fraction modulates the degree of exploration/exploitation within the evolutionary population.

• Mutation Probability
This parameter represents the probability that an actor goes through a mutation operation
between generation.

• Mutation Fraction
This parameter controls the fraction of the weights in a chosen actor (neural network) that
are mutated, once the actor is chosen for mutation.

• Mutation Strength
This parameter controls the standard deviation of the Gaussian operation that comprises
mutation.

• Super Mutation Probability
This parameter controls the probability that a super mutation (larger mutation) happens in
place of a standard mutation.

• Reset Mutation Probability
This parameter controls the probability a neural weight is instead reset between N (0, 1)
rather than being mutated.
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• Exploration Noise
This parameter controls the standard deviation of the Gaussian operation that comprise the
noise added to the actor’s actions during exploration by the learners (learner roll-outs).

• TD3 Policy Noise Variance
This parameter controls the standard deviation of the Gaussian operation that comprise the
noise added to the policy output before applying the Bellman backup. This is often referred
to as the magnitude of policy smoothing in TD3.

• TD3 Policy Noise Clip
This parameter controls the maximum norm of the policy noise used to smooth the policy.
• TD3 Policy Update Frequency

This parameter controls the number of critic updates per policy update in TD3.

B Rollout Methodology

Algorithm 2 describes an episode of rollout under MERL detailing the connections between the local
reward, global reward, and the associated replay buffer.
Algorithm 2 Function Rollout

1: procedure ROLLOUT(π,R, noise, ξ)
2: fitness = 0
3: for j = 1:ξ do
4: Reset environment and get initial joint state js
5: while env is not done do
6: Initialize an empty list of joint action ja = []
7: for Each agent (actor head) πk ∈ π and sk in js do
8: ja⇐ ja ∪ πk(sk|θπ

k

) + noiset
9: end for

10: Execute ja and observe joint local reward jl, global reward g and joint next state js′
11: for Each Replay BufferRk ∈ R and sk, ak, lk, s′k in js, ja, jl, js′ do
12: Append transition (sk, ak, lk, s

′
k) to Rk

13: end for
14: js = js′

15: if env is done: then
16: fitness← g
17: end if
18: end while
19: end for
20: Return fitness

ξ ,R
21: end procedure
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