
Goal-conditioned Imitation Learning

Yiming Ding∗
Department of Computer Science
University of California, Berkeley
dingyiming0427@berkeley.edu

Carlos Florensa∗
Department of Computer Science
University of California, Berkeley

florensa@berkeley.edu

Mariano Phielipp
Intel AI Labs

mariano.j.phielipp@intel.com

Pieter Abbeel
Department of Computer Science
University of California, Berkeley

pabbeel@berkeley.edu

Abstract

Designing rewards for Reinforcement Learning (RL) is challenging because it
needs to convey the desired task, be efficient to optimize, and be easy to compute.
The latter is particularly problematic when applying RL to robotics, where detecting
whether the desired configuration is reached might require considerable supervision
and instrumentation. Furthermore, we are often interested in being able to reach
a wide range of configurations, hence setting up a different reward every time
might be unpractical. Methods like Hindsight Experience Replay (HER) have
recently shown promise to learn policies able to reach many goals, without the
need of a reward. Unfortunately, without tricks like resetting to points along the
trajectory, HER might require many samples to discover how to reach certain areas
of the state-space. In this work we investigate different approaches to incorporate
demonstrations to drastically speed up the convergence to a policy able to reach
any goal, also surpassing the performance of an agent trained with other Imitation
Learning algorithms. Furthermore, we show our method can also be used when
the available expert trajectories do not contain the actions, which can leverage
kinesthetic or third person demonstration. The code is available 2.

1 Introduction

Reinforcement Learning (RL) has shown impressive results in a plethora of simulated tasks, ranging
from attaining super-human performance in video-games [1, 2] and board-games [3], to learning
complex locomotion behaviors [4, 5]. Nevertheless, these successes are shyly echoed in real world
robotics [6, 7]. This is due to the difficulty of setting up the same learning environment that is enjoyed
in simulation. One of the critical assumptions that are hard to obtain in the real world are the access
to a reward function. Self-supervised methods have the power to overcome this limitation.

A very versatile and reusable form of self-supervision for robotics is to learn how to reach any previ-
ously observed state upon demand. This problem can be formulated as training a goal-conditioned
policy [8, 9] that seeks to obtain the indicator reward of having the observation exactly match the
goal. Such a reward does not require any additional instrumentation of the environment beyond the
sensors the robot already has. But in practice, this reward is never observed because in continuous
spaces like the ones in robotics, it is extremely rare to observe twice the exact same sensory input.
Luckily, if we are using an off-policy RL algorithm [10, 11], we can “relabel" a collected trajectory

∗Equal contribution
2https://sites.google.com/view/goalconditioned-il/

Preprint. Under review.

ar
X

iv
:1

90
6.

05
83

8v
2

 [
cs

.L
G

]
 2

3
A

ug
 2

01
9

by replacing its goal by a state actually visited during that trajectory, therefore observing the indicator
reward as often as we wish. This method was introduced as Hindsight Experience Replay [12] or
HER, although it used special resets, and the reward was in fact an ε-ball around the goal, which
only makes sense in lower-dimensional state-spaces. More recently the method was shown to work
directly from vision with a special reward [13], and even only with the indicator reward of exactly
matching observation and goal [14].

In theory these approaches could learn how to reach any goal, but the breadth-first nature of the
algorithm makes that some areas of the space take a long time to be learned [15]. This is specially
challenging when there are bottlenecks between different areas of the state-space, and random motion
might not traverse them easily [16]. Some practical examples of this are pick-and-place, or navigating
narrow corridors between rooms, as illustrated in Fig. 2 depicting the diverse set of environments we
work with. In both cases a specific state needs to be reached (grasp the object, or enter the corridor)
before a whole new area of the space is discovered (placing the object, or visiting the next room). This
problem could be addressed by engineering a reward that guides the agent towards the bottlenecks,
but this defeats the purpose of trying to learn without direct reward supervision. In this work we
study how to leverage a few demonstrations that traverse those bottlenecks to boost the learning of
goal-reaching policies.

Learning from Demonstrations, or Imitation Learning (IL), is a well-studied field in robotics [17,
18, 19]. In many cases it is easier to obtain a few demonstrations from an expert than to provide a
good reward that describes the task. Most of the previous work on IL is centered around trajectory
following, or doing a single task. Furthermore it is limited by the performance of the demonstrations,
or relies on engineered rewards to improve upon them. In this work we first illustrate how IL methods
can be extended to the goal-conditioned setting, and study a more powerful relabeling strategy
that extracts additional information from the demonstrations. We then propose a novel algorithm,
goalGAIL, and show it can outperform the demonstrator without the need of any additional reward.
We also investigate how our method is more robust to sub-optimal experts. Finally, the method we
develop is able to leverage demonstrations that do not include the expert actions. This considerably
broadens its application in practical robotics, where demonstrations might be given by a motion
planner, by kinesthetic demonstrations [20] (moving the agent externally, instead of using its own
controls), or even by another agent [21]. To our knowledge, this is the first framework that can boost
goal-conditioned policy learning with only state demonstrations.

2 Related Work

Imitation Learning is an alternative to reward crafting to train a desired behaviors. There are
many ways to leverage demonstrations, from Behavioral Cloning [22] that directly maximizes the
likelihood of the expert actions under the training agent policy, to Inverse Reinforcement Learning
that extracts a reward function from those demonstrations and then trains a policy to maximize it
[23, 24, 25]. Another formulation close to the later is Generative Adversarial Imitation Learning
(GAIL), introduced by Ho and Ermon [26]. GAIL is one of the building blocks of our own algorithm,
goalGAIL, and is explained in more details in the Preliminaries section.

Unfortunately most work in the field cannot outperform the expert, unless another reward is available
during training [27, 28, 29], which might defeat the purpose of using demonstrations in the first
place. Furthermore, most tasks tackled with these methods consist on tracking expert state trajectories
[30, 31], but cannot adapt to unseen situations.

In this work we are interested in goal-conditioned tasks, where the objective is to be able to reach
any state upon demand [8, 9]. This kind of multi-task learning is pervasive in robotics [32, 33], but
challenging and data-hungry if no reward-shaping is available. Relabeling methods like Hindsight
Experience Replay [12] unlock the learning even in the sparse reward case [14]. Nevertheless, the
inherent breath-first nature of the algorithm might still produce inefficient learning of complex policies.
To overcome the exploration issue we investigate the effect of leveraging a few demonstrations. The
closest prior work is by Nair et al. [34], where a Behavioral Cloning loss is used with a Q-filter. We
found that a simple annealing of the Behavioral Cloning loss [35] works well. Furthermore, we
introduce a new relabeling technique of the expert trajectories that is particularly useful when only
few demonstrations are available. Finally we propose a novel algorithm goalGAIL, leveraging the
recently shown compatibility of GAIL with off-policy algorithms.

2

3 Preliminaries

We define a discrete-time finite-horizon discounted Markov decision process (MDP) by a tuple
M = (S,A,P, r, ρ0, γ,H), where S is a state set, A is an action set, P : S × A × S → R+ is a
transition probability distribution, γ ∈ [0, 1] is a discount factor, and H is the horizon. Our objective
is to find a stochastic policy πθ that maximizes the expected discounted reward within the MDP,
η(πθ) = Eτ [

∑T
t=0 γ

tr(st, at, st+1)]. We denote by τ = (s0, a0, ...,) an entire state-action trajectory,
where s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at). In the goal-conditioned setting
that we use here, the policy and the reward are also conditioned on a “goal" g ∈ S. The reward is
r(st, at, st+1, g) = 1

[
st+1 == g

]
, and hence the return is the γh, where h is the number of time-

steps to the goal. Given that the transition probability is not affected by the goal, g can be “relabeled"
in hindsight, so a transition (st, at, st+1, g, r = 0) can be treated as (st, at, st+1, g

′ = st+1, r = 1).
Finally, we also assume access to D trajectories

{
(sj0, a

j
0, s

j
1, ...)

}D
j=0
∼ τexpert that were collected by

an expert attempting to reach the goals {gj}Dj=0 sampled uniformly among the feasible goals. Those
trajectories must be approximately geodesics, meaning that the actions are taken such that the goal is
reached as fast as possible.

In GAIL [26], a discriminator Dψ is trained to distinguish expert transitions (s, a) ∼ τexpert,
from agent transitions (s, a) ∼ τagent, while the agent is trained to "fool" the discriminator
into thinking itself is the expert. Formally, the discriminator is trained to minimize LGAIL =
E(s,a)∼τagent [logDψ(s, a)] + E(s,a)∼τexpert [log(1−Dψ(s, a))]; while the agent is trained to maximize
E(s,a)∼τagent [logDψ(s, a)] by using the output of the discriminator logDψ(s, a) as reward. Originally,
the algorithms used to optimize the policy with on-policy methods like Trust Region Policy Opti-
mization [36], but recently there has been a wake of works leveraging the efficiency of off-policy
algorithms without loss in stability [37, 38, 39, 40]. This is a key capability that we exploit in our
goalGAIL algorithm.

4 Demonstrations in Goal-conditioned tasks

In this section we describe methods to incorporate demonstrations into Hindsight Experience Replay
[12] for training goal-conditioned policies. First we revisit adding a Behavioral Cloning loss to
the policy update as in [34], then we propose a novel expert relabeling technique, and finally we
formulate for the first time a goal-conditioned GAIL algorithm termed goalGAIL, and propose a
method to train it with state-only demonstrations.

4.1 Goal-conditioned Behavioral Cloning

The most direct way to leverage demonstrations
{
(sj0, a

j
0, s

j
1, ...)

}D
j=0

is to construct a data-set D
of all state-action-goal tuples (sjt , a

j
t , g

j), and run a supervised regression algorithm. In the goal-
conditioned case and assuming a deterministic policy πθ(s, g), the loss is:

LBC(θ,D) = E(sjt ,a
j
t ,g

j)∼D

[
‖πθ(sjt , gj)− a

j
t‖22
]

(1)

This loss and its gradient are computed without any additional environments samples from the trained
policy πθ. This makes it particularly convenient to combine a gradient descend step based on this
loss together with other policy updates. In particular we can use a standard off-policy Reinforcement
Learning algorithm like DDPG [10], where we fit the Qφ(a, s, g), and then estimate the gradient of
the expected return as:

∇θĴ =
1

N

N∑
i=1

∇aQφ(a, s, g)∇θπθ(s, g) (2)

In our goal-conditioned case, the Q fitting can also benefit from “relabeling“ like done in HER [12].
The improvement guarantees with respect to the task reward are lost when we combine the BC and
the deterministic policy gradient updates, but this can be side-stepped by either applying a Q-filter
1
{
Q(st, at, g) > Q(st, π(st, g), g)

}
to the BC loss as proposed in [34], or by annealing it as we do

in our experiments, which allows to eventually outperform the expert.

3

4.2 Relabeling the expert

(a) Performance on
reaching states visited
in the 20 given demon-
strations. The states are
green if reached by the
policy when attempting
so, and red otherwise.

(b) Performance on
reaching any possible
state. Each cell is col-
ored green if the policy
can reach the center of
it when attempting so,
and red otherwise.

Figure 1: Policy performance on reaching dif-
ferent goals in the four rooms, when training
with standard Behavioral Cloning (top row)
or with our expert relabeling (bottom).

The expert trajectories have been collected by ask-
ing the expert to reach a specific goal gj . But they
are also valid trajectories to reach any other state
visited within the demonstration! This is the key
motivating insight to propose a new type of relabel-
ing: if we have the transitions (sjt , a

j
t , s

j
t+1, g

j) in a
demonstration, we can also consider the transition
(sjt , a

j
t , s

j
t+1, g

′ = sjt+k) as also coming from the ex-
pert! Indeed that demonstration also went through the
state sjt+k, so if that was the goal, the expert would
also have generated this transition. This can be un-
derstood as a type of data augmentation leveraging
the assumption that the tasks we work on are quasi-
static. It will be particularly effective in the low data
regime, where not many demonstrations are available.
The effect of expert relabeling can be visualized in
the four rooms environment as it’s a 2D task where
states and goals can be plotted. In Fig. 1 we compare
the final performance of two agents, one trained with
pure Behavioral Cloning, and the other one also using
expert relabeling.

4.3 Goal-conditioned GAIL with Hindsight

The compounding error in Behavioral Cloning might make the policy deviate arbitrarily from the
demonstrations, and it requires too many demonstrations when the state dimension increases. The
first problem is less severe in our goal-conditioned case because in fact we do want to visit and
be able to purposefully reach all states, even the ones that the expert did not visit. But the second
drawback will become pressing when attempting to scale this method to practical robotics tasks
where the observations might be high-dimensional sensory input like images. Both problems can be
mitigated by using other Imitation Learning algorithms that can leverage additional rollouts collected
by the learning agent in a self-supervised manner, like GAIL [26]. In this section we extend the
formulation of GAIL to tackle goal-conditioned tasks, and then we detail how it can be combined
with HER [12], which allows to outperform the demonstrator and generalize to reaching all goals.
We call the final algorithm goalGAIL. First of all, the discriminator needs to also be conditioned on
the goal Dψ(a, s, g), and be trained by minimizing

LGAIL(Dψ,D,R) = E(s,a,g)∼R[logDψ(a, s, g)] +

E(s,a,g)∼D[log(1−Dψ(a, s, g))].
(3)

Once the discriminator is fitted, we can run our favorite RL algorithm on the reward
logDψ(a

h
t , s

h
t , g

h). In our case we used the off-policy algorithm DDPG [10] to allow for the
relabeling techniques outlined above. In the goal-conditioned case we also supplement with the
indicator reward rht = 1

[
sht+1 == gh

]
. This combination is slightly tricky because now the fitted

Qφ does not have the same clear interpretation it has when only one of the two rewards is used [14] .
Nevertheless, both rewards are pushing the policy towards the goals, so it shouldn’t be too conflicting.
Furthermore, to avoid any drop in final performance, the weight of the reward coming from GAIL
(δGAIL) can be annealed. The final proposed algorithm goalGAL, together with the expert relabeling
technique is formalized in Algorithm 1.

4.4 Use of state-only Demonstrations

Both Behavioral Cloning and GAIL use state-action pairs from the expert. This limits the use of
the methods, combined or not with HER, to setups where the exact same agent was actuated to
reach different goals. Nevertheless, much more data could be cheaply available if the action was not
required. For example, non-expert humans might not be able to operate a robot, but might be able to

4

Algorithm 1 Goal-conditioned GAIL with Hindsight: goalGAIL

1: Input: Demonstrations D =
{
(sj0, a

j
0, s

j
1, ..., g

j)
}D
j=0

, replay buffer R = {}, policy πθ(s, g),
discount γ, hindsight probability p

2: while not done do
3: # Sample rollout
4: g ∼ R ∪D . Goal are sampled from observed states
5: R ← R∪ (s0, a0, s1, ...) sampled using π(·, g)
6: # Sample from buffers
7:

{
(sjt , a

j
t , s

j
t+1, g

j)
}
∼ D,

{
(sit, a

i
t, s

i
t+1, g

i)
}
∼ R

8: # Relabel agent
9: for each i, with probability p do

10: gi ← sit+k, k ∼ Unif{t+ 1, . . . , T i} . Use future HER strategy
11: end for
12: # Relabel expert
13: gj ← sjt+k′ , k′ ∼ Unif{t+ 1, . . . , T j}
14: rht = 1

[
sht+1 == gh

]
15: ψ ← minψ LGAIL(Dψ,D,R) (Eq. 3)
16: rht = (1− δGAIL)rht + δGAIL logDψ(a

h
t , s

h
t , g

h) . Add annealed GAIL reward
17: # Fit Qφ
18: yht = rht + γQφ(π(s

h
t+1, g

h), sht+1, g
h) . Use target networks Qφ′ for stability

19: φ← minφ
∑
h ‖Qφ(aht , sht , gh)− yht ‖

20: # Update Policy
21: θ+ = α∇θĴ (Eq. 2)
22: Anneal δGAIL . Ensures outperforming the expert
23: end while

move the robot along the desired trajectory. This is called a kinesthetic demonstration. Another type
of state-only demonstration could be the one used in third-person imitation [21], where the expert
performed the task with an embodiment different from the agent that needs to learn the task. This has
mostly been applied to the trajectory-following case. In our case every demonstration might have a
different objective.

Furthermore, we would like to propose a method that not only leverages state-only demonstrations,
but can also outperform the quality and coverage of the demonstrations given, or at least generalize to
similar goals. The main insight we have here is that we can replace the action in the GAIL formulation
by the next state s′, and in most environments this should be as informative as having access to the
action directly. Intuitively, given a desired goal g, it should be possible to determine if a transition
s→ s′ is taking the agent in the right direction. The loss function to train a discriminator able to tell
apart the current agent and demonstrations (always transitioning towards the goal) is simply:

LGAILs(Ds
ψ,D,R) =E(s,s′,g)∼R[logD

s
ψ(s, s

′, g)] + E(s,s′,g)∼D[log(1−Ds
ψ(s, s

′, g))].

5 Experiments

We are interested in answering the following questions:

• Without supervision from reward, can goalGAIL use demonstrations to accelerate the
learning of goal-conditioned tasks and outperform the demonstrator?

• Is the Expert Relabeling an efficient way of doing data-augmentation on the demonstrations?
• Compared to Behavorial Cloning methods, is goalGAIL more robust to noise in the expert

actions?
• Can goalGAIL leverage state-only demonstrations equally well as full trajectories?

We evaluate these questions in four different simulated robotic goal-conditioned tasks that are detailed
in the next subsection along with the performance metric used throughout the experiments section.

5

(a) Continuous Four rooms (b) Pointmass block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 2: Four continuous goal-conditioned environments where we tested the effectiveness of the
proposed algorithm goalGAIL and expert relabeling technique.

All the results use 20 demonstrations reaching uniformly sampled goals. All curves have 5 random
seeds and the shaded area is one standard deviation.

5.1 Tasks

Experiments are conducted in four continuous environments in MuJoCo [41]. The performance
metric we use in all our experiments is the percentage of goals in the feasible goal space the agent is
able to reach. We call this metric coverage. To estimate this percentage we sample feasible goals
uniformly, and execute a rollout of the current policy. It is consider a success if the agent reaches
within ε of the desired goal. Note that during training we do not assume access to the feasible goal
distribution, nor use any ε to give rewards. These are two very commonly used assumptions in works
using HER [12, 34], and we do not assume them.

Four rooms environment: This is a continuous twist on a well studied problem in the Reinforcement
Learning literature. A point mass is placed in an environment with four rooms connected through
small openings as depicted in Fig. 2a. The action space of the agent is continuous and specifies the
desired change in state space, and the goals-space exactly corresponds to the state-space.

Pointmass Block Pusher: In this task, a Pointmass needs to navigates itself to the block, push the
block to a desired position (x, y) and then eventually stops a potentially different spot (a, b). The
action space is two dimensional as in four rooms environment. The goal space is four dimensional
and specifies (x, y, a, b).

Fetch Pick and Place: This task is the same as the one described by Nair et al. [34], where a fetch
robot needs to pick a block and place it in a desired point in space. The control is four-dimensional,
corresponding to a change in (x, y, z) position of the end-effector as well as a change in gripper
opening. The goal space is three dimensional and is restricted to the position of the block.

Fetch Stack Two: A Fetch robot stacks two blocks on a desired position, as also done in Nair et al.
[34]. The control is the same as in Fetch Pick and Place while the goal space is now the position of
two blocks, which is six dimensional.

5.2 Goal-conditioned GAIL with Hindsight: goalGAIL

In goal-conditioned tasks, HER [12] should eventually converge to a policy able to reach any desired
goal. Nevertheless, this might take a long time, specially in environments where there are bottlenecks
that need to be traversed before accessing a whole new area of the goal space. In this section we show
how the methods introduced in the previous section can leverage a few demonstrations to improve the
convergence speed of HER. This was already studied for the case of Behavioral Cloning by [34], and
in this work we show we also get a benefit when using GAIL as the Imitation Learning algorithm,
which brings considerable advantages over Behavioral Cloning as shown in the next sections. In all
four environments, we observe that our proposed method goalGAIL considerably outperforms the
two baselines it builds upon: HER and GAIL. HER alone has a very slow convergence, although as
expected it ends up reaching the same final performance if run long enough. On the other hand GAIL
by itself learns fast at the beginning, but its final performance is capped. This is because despite
collecting more samples on the environment, those come with no reward of any kind indicating what

6

(a) Continuous Four rooms (b) Pointmass block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 3: In all four environments, the proposed algorithm goalGAIL takes off and converges faster
than HER by leveraging demonstrations. It is also able to outperform the demonstrator unlike standard
GAIL, the performance of which is capped.

(a) Continuous Four rooms (b) Pointmass block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 4: Our Expert Relabeling technique boosts final performance of standard BC. It also accelerates
convergence of BC+HER and goalGAIL on all four environments.

is the task to perform (reach the given goals). Therefore, once it has extracted all the information
it can from the demonstrations it cannot keep learning and generalize to goals further from the
demonstrations. This is not an issue anymore when combined with HER, as our results show.

5.3 Expert relabeling

Here we show that the Expert Relabeling technique introduced in Section 4.2 is an effective means of
data augmentation on demonstrations. We show the effect of Expert Relabeling on three methods:
standard behavioral cloning (BC), HER with a behavioral cloning loss (BC+HER) and goalGAIL. For
BC+HER, the gradient of the behavior cloning loss LBC (Equation 1) is combined with the gradient
of the policy objective∇θĴ (Equation 2). The resulting gradient for the policy update is:

∇θĴBC+HER = ∇θĴ − β∇θLBC

where β is the weight of the BC loss and is annealed to enable the agent to outperform the expert.

As shown in Fig. 4, our expert relabeling technique brings considerable performance boosts for both
Behavioral Cloning methods and goalGAIL in all four environments.

We also perform a further analysis of the benefit of the expert relabeling in the four-rooms environment
because it is easy to visualize in 2D the goals the agent can reach. We see in Fig. 1 that without the
expert relabeling, the agent fails to learn how to reach many intermediate states visited in the middle
of a demonstration.

The performance of running pure Behavioral Cloning is plotted as a horizontal dotted line given
that it does not require any additional environment steps. We observe that combining BC with HER
always produces faster learning than running just HER, and it reaches higher final performance than
running pure BC with only 20 demonstrations.

5.4 Robustness to sub-optimal expert

In the above sections we were assuming access to perfectly optimal experts. Nevertheless, in
practical applications the experts might have a more erratic behavior, not always taking the best
action to go towards the given goal. In this section we study how the different methods perform
when a sub-optimal expert is used. To do so we collect sub-optimal demonstration trajectories by
adding noise α to the optimal actions, and making it be ε-greedy. Thus, the sub-optimal expert is
a = 1[r < ε]u + 1[r > ε](π∗(a|s, g) + α), where r ∼ Unif(0, 1), α ∼ N (0, σ2

αI) and u is a
uniformly sampled random action in the action space.

7

(a) Continuous Four rooms (b) Pointmass block pusher (c) Fetch Pick & Place (d) Fetch Stack Two

Figure 5: Effect of sub-optimal demonstrations on goalGAIL and Behavorial Cloning method. We
produce sub-optimal demonstrations by making the expert ε-greedy and adding Gaussian noise to the
optimal actions.

In Fig. 5 we observe that approaches that directly try to copy the action of the expert, like Behavioral
Cloning, greatly suffer under a sub-optimal expert, to the point that it barely provides any improvement
over performing plain Hindsight Experience Replay. On the other hand, methods based on training a
discriminator between expert and current agent behavior are able to leverage much noisier experts. A
possible explanation of this phenomenon is that a discriminator approach can give a positive signal
as long as the transition is "in the right direction", without trying to exactly enforce a single action.
Under this lens, having some noise in the expert might actually improve the performance of these
adversarial approaches, as it has been observed in many generative models literature [42].

5.5 Using state-only demonstrations

Figure 6: Output of the Dis-
criminator D(·, g) for the four
rooms environment. The goal
is the lower left white dot, and
the start is at the top right.

Behavioral Cloning and standard GAIL rely on the state-action (s, a)
tuples coming from the expert. Nevertheless there are many cases
in robotics where we have access to demonstrations of a task, but
without the actions. In this section we want to emphasize that all the
results obtained with our goalGAIL method and reported in Fig. 3
and Fig. 4 do not require any access to the action that the expert took.
Surprisingly, all environments but Fetch Pick & Place, despite the
more restricted information goalGAIL has access to, it outperforms
BC combined with HER. This might be due to the superior imitation
learning performance of GAIL, and also to the fact that these tasks
are solvable by only matching the state-distribution of the expert. We
run the experiment of training GAIL only conditioned on the current
state, and not the action (as also done in other non-goal-conditioned
works [25]), and we observe that the discriminator learns a very well
shaped reward that clearly encourages the agent to go towards the
goal, as pictured in Fig. 6. See the Appendix for more details.

6 Conclusions and Future Work

Hindsight relabeling can be used to learn useful behaviors without any reward supervision for
goal-conditioned tasks, but they are inefficient when the state-space is large or includes exploration
bottlenecks. In this work we show how only a few demonstrations can be leveraged to improve the
convergence speed of these methods. We introduce a novel algorithm, goalGAIL, that converges
faster than HER and to a better final performance than a naive goal-conditioned GAIL. We also study
the effect of doing expert relabeling as a type of data augmentation on the provided demonstrations,
and demonstrate it improves the performance of our goalGAIL as well as goal-conditioned Behavioral
Cloning. We emphasize that our goalGAIL method only needs state demonstrations, without using
expert actions like other Behavioral Cloning methods. Finally, we show that goalGAIL is robust to
sub-optimalities in the expert behavior.

All the above factors make our goalGAIL algorithm very suited for real-world robotics. This is a
very exciting future work. In the same line, we also want to test the performance of these methods in
vision-based tasks. Our preliminary experiments show that Behavioral Cloning fails completely in
the low data regime in which we operate (less than 20 demonstrations).

8

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[2] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Woj-
ciech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo Ewalds,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dalibard,
David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor Cai, David
Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Yuhuai Wu,
Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap,
Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaStar: Mastering the
Real-Time Strategy Game StarCraft II. Technical report, 2019.

[3] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):354–359,
10 2017. ISSN 14764687. doi: 10.1038/nature24270. URL http://arxiv.org/abs/1610.
00633.

[4] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval
Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin Riedmiller, and David Silver. Emergence
of Locomotion Behaviours in Rich Environments. 7 2017. URL http://arxiv.org/abs/
1707.02286.

[5] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic Neural Networks for Hierarchical
Reinforcement Learning. International Conference in Learning Representations, pages 1–17,
2017. ISSN 14779129. doi: 10.1002/rcm.765. URL http://arxiv.org/abs/1704.03012.

[6] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Van De Wiele, Volodymyr Mnih, Nicolas Heess, and Tobias Springenberg. Learning by Playing
– Solving Sparse Reward Tasks from Scratch. Internation Conference in Machine Learning,
2018.

[7] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous
Manipulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost. 10 2018.
URL http://arxiv.org/abs/1810.06045.

[8] Leslie P. Kaelbling. Learning to Achieve Goals. International Joint Conference on Artificial
Intelligence (IJCAI), pages 1094–1098, 1993.

[9] Tom Schaul, Dan Horgan, Karol Gregor, and David Silver. Universal Value Function Ap-
proximators. Internation Conference in Machine Learning, 2015. URL http://jmlr.org/
proceedings/papers/v37/schaul15.pdf.

[10] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, pages 1–14, 2015. URL http://arxiv.org/abs/1509.02971.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, Sergey Levine, and Computer Sciences. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor. Internation Conference in Machine Learning, pages 1–15, 2018.

[12] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience
Replay. Advances in Neural Information Processing Systems, 2017. ISSN 10495258. doi:
10.1016/j.surfcoat.2018.06.018. URL http://arxiv.org/abs/1707.01495.

[13] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
Reinforcement Learning with Imagined Goals. Adavances in Neural Information Processing
Systems, 2018.

[14] Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin Riedmiller.
Self-supervised Learning of Image Embedding for Continuous Control. In Workshop on
Inference to Control at NeurIPS, 2018. URL http://arxiv.org/abs/1901.00943.

9

http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1704.03012
http://arxiv.org/abs/1810.06045
http://jmlr.org/proceedings/papers/v37/schaul15.pdf
http://jmlr.org/proceedings/papers/v37/schaul15.pdf
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1901.00943

[15] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic Goal Generation for
Reinforcement Learning Agents. International Conference in Machine Learning, 2018. URL
http://arxiv.org/abs/1705.06366.

[16] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
Curriculum Generation for Reinforcement Learning. Conference on Robot Learning, pages
1–16, 2017. ISSN 1938-7228. doi: 10.1080/00908319208908727. URL http://arxiv.org/
abs/1707.05300.

[17] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, and Stefan Schaal. Learning locomotion over
rough terrain using terrain templates. In International Conference on Intelligent Robots and
Systems, pages 167–172. IEEE, 2009. ISBN 978-1-4244-3803-7. doi: 10.1109/IROS.2009.
5354701. URL http://ieeexplore.ieee.org/document/5354701/.

[18] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning. International Conference on Artificial
Intelligence and Statistics, 2011.

[19] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake
Zhao, and Karol Zieba. End to End Learning for Self-Driving Cars. 2016. URL http:
//arxiv.org/abs/1604.07316.

[20] Simon Manschitz, Jens Kober, Michael Gienger, and Jan Peters. Learning movement primitive
attractor goals and sequential skills from kinesthetic demonstrations. Robotics and Autonomous
Systems, 74:97–107, dec 2015. doi: 10.1016/J.ROBOT.2015.07.005.

[21] Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever. Third-Person Imitation Learning. Interna-
tional Conference in Learning Representations, 3 2017. URL http://arxiv.org/abs/1703.
01703.

[22] Dean A Pomerleau. ALVINN: an autonomous land vehicle in a neural network. Advances in Neu-
ral Information Processing Systems, pages 305–313, 1989. URL https://papers.nips.cc/
paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdfhttp:
//dl.acm.org/citation.cfm?id=89851.89891.

[23] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum Entropy
Inverse Reinforcement Learning. pages 1433–1438, 2008.

[24] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided Cost Learning: Deep Inverse Optimal
Control via Policy Optimization. Internation Conference in Machine Learning, 3 2016. URL
http://arxiv.org/abs/1603.00448.

[25] Justin Fu, Katie Luo, and Sergey Levine. Learning Robust Rewards with Adversarial Inverse
Reinforcement Learning. International Conference in Learning Representations, 10 2018. URL
http://arxiv.org/abs/1710.11248.

[26] Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. Advances in
Neural Information Processing Systems, 2016. URL http://arxiv.org/abs/1606.03476.

[27] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas
Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging Demonstrations
for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards. pages 1–11,
2017.

[28] Yang Gao, Huazhe Harry, Xu Ji, Lin Fisher, Yu Sergey, and Levine Trevor. Reinforcement
Learning from Imperfect Demonstrations. Internation Conference in Machine Learning, 2018.

[29] Wen Sun, J. Andrew Bagnell, and Byron Boots. Truncated Horizon Policy Search: Combining
Reinforcement Learning & Imitation Learning. pages 1–14, 2018. ISSN 0004-6361. doi:
10.1051/0004-6361/201527329. URL http://arxiv.org/abs/1805.11240.

[30] Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvu-
nakool, János Kramár, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Reinforcement and
Imitation Learning for Diverse Visuomotor Skills. Robotics: Science and Systems, 2018. URL
http://arxiv.org/abs/1802.09564.

[31] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. DeepMimic: Example-
Guided Deep Reinforcement Learning of Physics-Based Character Skills. Transactions on

10

http://arxiv.org/abs/1705.06366
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
http://ieeexplore.ieee.org/document/5354701/
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1703.01703
http://arxiv.org/abs/1703.01703
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf http://dl.acm.org/citation.cfm?id=89851.89891
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf http://dl.acm.org/citation.cfm?id=89851.89891
https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf http://dl.acm.org/citation.cfm?id=89851.89891
http://arxiv.org/abs/1603.00448
http://arxiv.org/abs/1710.11248
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1805.11240
http://arxiv.org/abs/1802.09564

Graphics (Proc. ACM SIGGRAPH), 37(4), 2018. doi: 10.1145/3197517.3201311. URL http:
//arxiv.org/abs/1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311.

[32] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, and Alex Ray. Learning Dexterous
In-Hand Manipulation. pages 1–27.

[33] Xingyu Lin, Pengsheng Guo, Carlos Florensa, and David Held. Adaptive Variance for Changing
Sparse-Reward Environments. International Conference on Robotics and Automation, 2019.
URL http://arxiv.org/abs/1903.06309.

[34] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Overcoming Exploration in Reinforcement Learning with Demonstrations. International
Conference on Robotics and Automation, 2018. ISSN 0969-2290. doi: 10.1080/09692290.2013.
809781. URL http://arxiv.org/abs/1709.10089.

[35] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, and L G Sep. Learning
Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations.
Robotics: Science and Systems, 2018.

[36] John Schulman, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust Region Policy
Optimization. International Conference in Machine Learning, 2015.

[37] Lionel Blondé and Alexandros Kalousis. Sample-Efficient Imitation Learning via Generative
Adversarial Nets. AISTATS, 2019. URL https://youtu.be/-nCsqUJnRKU.

[38] Fumihiro Sasaki, Tetsuya Yohira, and Atsuo Kawaguchi. Sample Efficient Imitation Learning
for Continuous Control. International Conference in Learning Representationsa, pages 1–15,
2019.

[39] Yannick Schroecker, Mel Vecerik, and Jonathan Scholz. Generative predecessor models for
sample-efficient imitation learning. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SkeVsiAcYm.

[40] Ilya Kostrikov, Kumar Krishna Agrawal2, Debidatta Dwibedi, Sergey Levine, and Jonathan
Tompson. DISCRIMINATOR-ACTOR-CRITIC: ADDRESSING SAMPLE INEFFICIENCY
AND REWARD BIAS IN ADVERSARIAL IMITATION LEARNING. International Confer-
ence in Learning Representations, 2019.

[41] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo : A physics engine for model-based
control. pages 5026–5033, 2012.

[42] Ian J Goodfellow, Jean Pouget-abadie, Mehdi Mirza, Bing Xu, and David Warde-farley. Gener-
ative Adversarial Nets. pages 1–9.

11

http://arxiv.org/abs/1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311
http://arxiv.org/abs/1804.02717%0Ahttp://dx.doi.org/10.1145/3197517.3201311
http://arxiv.org/abs/1903.06309
http://arxiv.org/abs/1709.10089
https://youtu.be/-nCsqUJnRKU.
https://openreview.net/forum?id=SkeVsiAcYm

A Hyperparameters and Architectures

In the four environments used in our experiments, i.e. Four Rooms environment, Fetch Pick &
Place, Pointmass block pusher and Fetch Stack Two, the task horizons are set to 300, 100, 100
and 150 respectively. The discount factors are γ = 1 − 1

H . In all experiments, the Q function,
policy and discriminator are paramaterized by fully connected neural networks with two hidden
layers of size 256. DDPG is used for policy optimization and hindsight probability is set to p = 0.8.
The initial value of the behavior cloning loss weight β is set to 0.1 and is annealed by 0.9 per 250
rollouts collected. The initial value of the discriminator reward weight δGAIL is set to 0.1. We found
empirically that there is no need to anneal δGAIL .

For experiments with sub-optimal expert in section 5.4, ε is set to 0.4, 0.5 0.4, 0.1, and σα is set to
1.5, 0.3, 0.2 and 0 respectively for the four environments.

B Effect of Different Input of Discriminator

We trained the discriminator in three settings:

• current state and goal: (s, g)
• current state, next state and goal: (s, s′, g)
• current state, action and goal: (s, a, g)

We compare the three different setups in Fig. 7.

Four rooms 20 demos Fetch Pick & Place 20 demos Pointmass block pusher 20 demos Fetch Stack Two 100 demos

Four rooms 12 demos Fetch Pick & Place 12 demos Pointmass block pusher 12 demos Fetch Stack Two 50 demos

Four rooms 6 demos Fetch Pick & Place 6 demos Pointmass block pusher 6 demos Fetch Stack Two 30 demos

Figure 7: Study of different discriminator inputs for goalGAIL in four environments

12

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Demonstrations in Goal-conditioned tasks
	4.1 Goal-conditioned Behavioral Cloning
	4.2 Relabeling the expert
	4.3 Goal-conditioned GAIL with Hindsight
	4.4 Use of state-only Demonstrations

	5 Experiments
	5.1 Tasks
	5.2 Goal-conditioned GAIL with Hindsight: goalGAIL
	5.3 Expert relabeling
	5.4 Robustness to sub-optimal expert
	5.5 Using state-only demonstrations

	6 Conclusions and Future Work
	A Hyperparameters and Architectures
	B Effect of Different Input of Discriminator

